Levchenko, A. Dynamical and integrative cell signaling: challenges for the new biology. Biotechnol. Bioeng.84, 773–782 (2003). CASPubMed Google Scholar
Sivakumaran, S., Hariharaputran, S., Mishra, J. & Bhalla, U. S. The database of quantitative cellular signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics19, 408–415 (2003). CASPubMed Google Scholar
Gilman, A. G. et al. Overview of the Alliance for Cellular Signaling. Nature420, 703–706 (2002). Provides an overview of the first coordinated, multi-institutional effort to systematically unravel the signalling mechanisms of model systems. CASPubMed Google Scholar
Ge, H., Walhout, A. J. & Vidal, M. Integrating 'omic' information: a bridge between genomics and systems biology. Trends Genet.19, 551–560 (2003). Emphasizes the need for integrating and reconciling data from several experimental sources to create the most accurate representation of biochemical networks. CASPubMed Google Scholar
Helmke, B. P. & Schwartz, M. A. Putting the squeeze on mechanotransduction. Dev. Cell6, 745–746 (2004). CASPubMed Google Scholar
Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci.116, 1157–1173 (2003). CASPubMed Google Scholar
Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci.116, 1397–1408 (2003). CASPubMed Google Scholar
Pennisi, E. Human genome. A low number wins the GeneSweep Pool. Science300, 1484 (2003). CASPubMed Google Scholar
Hood, L. & Galas, D. The digital code of DNA. Nature421, 444–448 (2003). PubMed Google Scholar
Vander, A. J., Sherman, J. H. & Luciano, D. S. Human physiology: the mechanisms of body function (WCB McGraw–Hill, Boston, Massachusetts, USA 1998). Google Scholar
Venter, J. C. et al. The sequence of the human genome. Science291, 1304–1351 (2001). CASPubMed Google Scholar
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science298, 1912–1934 (2002). The authors present the first systematic inventory of a complete set of signalling network components (protein kinases) in the human cell. CASPubMed Google Scholar
Wang, W. Q., Sun, J. P. & Zhang, Z. Y. An overview of the protein tyrosine phosphatase superfamily. Curr. Top. Med. Chem.3, 739–748 (2003). CASPubMed Google Scholar
Forrest, A. R. et al. Phosphoregulators: protein kinases and protein phosphatases of mouse. Genome Res.13, 1443–1454 (2003). CASPubMedPubMed Central Google Scholar
Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell117, 699–711 (2004). CASPubMed Google Scholar
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). This, and reference 14, reported the initial sequence of the human genome. They provide a glimpse into the 'parts list' of signalling networks from which further reconstructions and analyses will be developed. CASPubMed Google Scholar
Roberts, G. C. & Smith, C. W. Alternative splicing: combinatorial output from the genome. Curr. Opin. Chem. Biol.6, 375–383 (2002). CASPubMed Google Scholar
Modrek, B. & Lee, C. A genomic view of alternative splicing. Nature Genet.30, 13–19 (2002). CASPubMed Google Scholar
Hirano, F. et al. Alternative splicing variants of IκBβ establish differential NF-κB signal responsiveness in human cells. Mol. Cell. Biol.18, 2596–2607 (1998). CASPubMedPubMed Central Google Scholar
Modrek, B., Resch, A., Grasso, C. & Lee, C. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res.29, 2850–2859 (2001). CASPubMedPubMed Central Google Scholar
O'Donovan, C., Apweiler, R. & Bairoch, A. The human proteomics initiative (HPI). Trends Biotechnol.19, 178–181 (2001). CASPubMed Google Scholar
Heaney, M. L. & Golde, D. W. Soluble receptors in human disease. J. Leukoc. Biol.64, 135–146 (1998). CASPubMed Google Scholar
Service, R. F. Proteomics. High-speed biologists search for gold in proteins. Science294, 2074–2077 (2001). CASPubMed Google Scholar
Kiekhaefer, C. M., Grass, J. A., Johnson, K. D., Boyer, M. E. & Bresnick, E. H. Hematopoietic-specific activators establish an overlapping pattern of histone acetylation and methylation within a mammalian chromatin domain. Proc. Natl Acad. Sci. USA99, 14309–14314 (2002). CASPubMedPubMed Central Google Scholar
Fischle, W., Wang, Y. & Allis, C. D. Binary switches and modification cassettes in histone biology and beyond. Nature425, 475–479 (2003). ArticleCASPubMed Google Scholar
Park, S. H., Zarrinpar, A. & Lim, W. A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science299, 1061–1064 (2003). CASPubMed Google Scholar
Grigoriev, A. On the number of protein–protein interactions in the yeast proteome. Nucleic Acids Res.31, 4157–4161 (2003). CASPubMedPubMed Central Google Scholar
Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Perelson, A. S. & Goldstein, B. The complexity of complexes in signal transduction. Biotechnol. Bioeng.84, 783–794 (2003). CASPubMed Google Scholar
Vassilatis, D. K. et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl Acad. Sci. USA100, 4903–4908 (2003). CASPubMedPubMed Central Google Scholar
Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. & Palsson, B. O. Metabolic pathways in the post-genome era. Trends Biochem. Sci.28, 250–258 (2003). CASPubMed Google Scholar
Bornheimer, S. J., Maurya, M. R., Farquhar, M. G. & Subramaniam, S. Computational modeling reveals how interplay between components of the GTPase-cycle module regulates signal transduction. Proc. Natl Acad. Sci. USA101, 15899–15904 (2004). CASPubMedPubMed Central Google Scholar
Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol.20, 370–375 (2002). Google Scholar
Kholodenko, B. N., Demin, O. V., Moehren, G. & Hoek, J. B. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem.274, 30169–30181 (1999). CASPubMed Google Scholar
Masui, H., Castro, L. & Mendelsohn, J. Consumption of EGF by A431 cells: evidence for receptor recycling. J. Cell Biol.120, 85–93 (1993). CASPubMed Google Scholar
Buss, J. E., Kudlow, J. E., Lazar, C. S. & Gill, G. N. Altered epidermal growth factor (EGF)-stimulated protein kinase activity in variant A431 cells with altered growth responses to EGF. Proc. Natl Acad. Sci. USA79, 2574–2578 (1982). CASPubMedPubMed Central Google Scholar
Handin, R. I., Lux, S. E. & Stossel, T. P. Blood: principles and practice of hematology (Lippincott Williams & Wilkins, Philadelphia, USA, 2003). Google Scholar
Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol.5, 121–132 (2004). CAS Google Scholar
Wang, Y., Pennock, S. D., Chen, X., Kazlauskas, A. & Wang, Z. Platelet-derived growth factor receptor-mediated signal transduction from endosomes. J. Biol. Chem.279, 8038–8046 (2004). CASPubMed Google Scholar
Bomsztyk, K., Stanton, T. H., Smith, L. L., Rachie, N. A. & Dower, S. K. Properties of interleukin-1 and interferon-γ receptors in B lymphoid cell line. J. Biol. Chem.264, 6052–6057 (1989). CASPubMed Google Scholar
Alberts, B. Molecular biology of the cell 4th edn (Garland Science, New York, 2002). Google Scholar
Savinell, J. M., Lee, G. M. & Palsson, B. O. On the orders of magnitude of epigenic dynamics and monoclonal-antibody production. Bioproc. Eng.4, 231–234 (1989). CAS Google Scholar
Francis, K. & Palsson, B. O. Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. Proc. Natl Acad. Sci. USA94, 12258–12262 (1997). CASPubMedPubMed Central Google Scholar
Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell97, 599–607 (1999). CASPubMed Google Scholar
Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol.4, R54 (2003). PubMedPubMed Central Google Scholar
van Drogen, F., Stucke, V. M., Jorritsma, G. & Peter, M. MAP kinase dynamics in response to pheromones in budding yeast. Nature Cell Biol.3, 1051–1059 (2001). CASPubMed Google Scholar
Kusari, A. B., Molina, D. M., Sabbagh, W. Jr., Lau, C. S. & Bardwell, L. A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1. J. Cell Biol.164, 267–277 (2004). CASPubMedPubMed Central Google Scholar
Wiley, H. S., Shvartsman, S. Y. & Lauffenburger, D. A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol.13, 43–50 (2003). This review recounts the success of models of the EGF-receptor signalling system and argues for integrative computational and experimental approaches for dissecting signalling mechanisms. CASPubMed Google Scholar
Milo, R. et al. Network motifs: simple building blocks of complex networks. Science298, 824–827 (2002). CASPubMed Google Scholar
Rives, A. W. & Galitski, T. Modular organization of cellular networks. Proc. Natl Acad. Sci. USA100, 1128–1133 (2003). CASPubMedPubMed Central Google Scholar
Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature402, C47–C52 (1999). CASPubMed Google Scholar
Yi, T. M., Huang, Y., Simon, M. I. & Doyle, J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl Acad. Sci. USA97, 4649–4653 (2000). CASPubMedPubMed Central Google Scholar
McAdams, H. H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science301, 1874–1877 (2003). CASPubMed Google Scholar
Saucerman, J. J., Brunton, L. L., Michailova, A. P. & McCulloch, A. D. Modeling β-adrenergic control of cardiac myocyte contractility in silico. J. Biol. Chem.278, 47997–48003 (2003). CASPubMed Google Scholar
Lucas, P. C., McAllister-Lucas, L. M. & Nunez, G. NF-κB signaling in lymphocytes: a new cast of characters. J. Cell Sci.117, 31–39 (2004). CASPubMed Google Scholar
Cortassa, S., Aon, M. A., Marban, E., Winslow, R. L. & O'Rourke, B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys. J.84, 2734–2755 (2003). CASPubMedPubMed Central Google Scholar
Spirin, V. & Mirny, L. A. Protein complexes and functional modules in molecular networks. Proc. Natl Acad. Sci. USA100, 12123–12128 (2003). CASPubMedPubMed Central Google Scholar
Kauffman, K. J., Prakash, P. & Edwards, J. S. Advances in flux balance analysis. Curr. Opin. Biotechnol.14, 491–496 (2003). CASPubMed Google Scholar
Price, N. D., Papin, J. A., Schilling, C. H. & Palsson, B. O. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol.21, 162–169 (2003). CASPubMed Google Scholar
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science290, 2306–2309 (2000). CASPubMed Google Scholar
Odom, D. T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science303, 1378–1381 (2004). CASPubMedPubMed Central Google Scholar
Zhu, H. & Snyder, M. 'Omic' approaches for unraveling signaling networks. Curr. Opin. Cell Biol.14, 173–179 (2002). CASPubMed Google Scholar
Graves, P. R. & Haystead, T. A. A functional proteomics approach to signal transduction. Recent Prog. Horm. Res.58, 1–24 (2003). CASPubMed Google Scholar
von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature417, 399–403 (2002). CASPubMed Google Scholar
Stagljar, I., Korostensky, C., Johnsson, N. & te Heesen, S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl Acad. Sci. USA95, 5187–5192 (1998). CASPubMedPubMed Central Google Scholar
Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J. & Karin, M. Isolation of an AP-1 repressor by a novel method for detecting protein–protein interactions. Mol. Cell. Biol.17, 3094–3102 (1997). CASPubMedPubMed Central Google Scholar
Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002). CASPubMed Google Scholar
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). CASPubMed Google Scholar
Stagljar, I. Finding partners: emerging protein interaction technologies applied to signaling networks. Sci. STKE pe56 (2003).
Blagoev, B., Ong, S. E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnol.22, 1139–1145 (2004). CAS Google Scholar
Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292, 929–934 (2001).The authors present an approach for systematically interrogating a biochemical network. CASPubMed Google Scholar
Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science299, 2039–2045 (2003). CASPubMed Google Scholar
Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature424, 797–801 (2003). CASPubMed Google Scholar
Zheng, L. et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl Acad. Sci. USA101, 135–140 (2004). CASPubMed Google Scholar
Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science303, 832–835 (2004). CASPubMed Google Scholar
Nielsen, U. B., Cardone, M. H., Sinskey, A. J., MacBeath, G. & Sorger, P. K. Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc. Natl Acad. Sci. USA100, 9330–9335 (2003). PubMedPubMed Central Google Scholar
Phair, R. D. & Misteli, T. Kinetic modelling approaches to in vivo imaging. Nature Rev. Mol. Cell Biol.2, 898–907 (2001). CAS Google Scholar
Meyer, T. & Teruel, M. N. Fluorescence imaging of signaling networks. Trends Cell Biol.13, 101–106 (2003). CASPubMed Google Scholar
Ding, D. Q. et al. Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes Cells5, 169–190 (2000). CASPubMed Google Scholar
Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature425, 686–691 (2003). CASPubMed Google Scholar
Martin-Fernandez, M., Clarke, D. T., Tobin, M. J., Jones, S. V. & Jones, G. R. Preformed oligomeric epidermal growth factor receptors undergo an ectodomain structure change during signaling. Biophys. J.82, 2415–2427 (2002). CASPubMedPubMed Central Google Scholar
Bunemann, M., Frank, M. & Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl Acad. Sci. USA100, 16077–16082 (2003). PubMedPubMed Central Google Scholar
Sato, M., Ozawa, T., Inukai, K., Asano, T. & Umezawa, Y. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nature Biotechnol.20, 287–294 (2002). CAS Google Scholar
Walhout, A. J. et al. Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr. Biol.12, 1952–1958 (2002). CASPubMed Google Scholar
Herrgard, M. J., Covert, M. W. & Palsson, B. O. Reconciling gene expression data with known genome-scale regulatory network structures. Genome Res.13, 2423–2434 (2003). CASPubMedPubMed Central Google Scholar
Plavec, I. et al. Method for analyzing signaling networks in complex cellular systems. Proc. Natl Acad. Sci. USA101, 1223–1228 (2004). CASPubMedPubMed Central Google Scholar
Tewari, M. et al. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-β signaling network. Mol. Cell13, 469–482 (2004). CASPubMed Google Scholar
Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biol.6, 97–105 (2004). High-throughput experimental technologies are beginning to be used to interrogate signalling networks at a cellular level, as shown in this reference and in reference 87. CASPubMed Google Scholar
Sambrano, G. R. et al. Unravelling the signal-transduction network in B lymphocytes. Nature420, 708–710 (2002). CASPubMed Google Scholar
Sambrano, G. R. et al. Navigating the signalling network in mouse cardiac myocytes. Nature420, 712–714 (2002). CASPubMed Google Scholar
Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature411, 41–42 (2001). CASPubMed Google Scholar
Bu, D. et al. Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res.31, 2443–2450 (2003). CASPubMedPubMed Central Google Scholar
Schuster, S., Kholodenko, B. N. & Westerhoff, H. V. Cellular information transfer regarded from a stoichiometry and control analysis perspective. Biosystems55, 73–81 (2000). CASPubMed Google Scholar
Papin, J. A. & Palsson, B. O. The JAK–STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys. J.87, 37–46 (2004). CASPubMedPubMed Central Google Scholar
Goodman, O. B. Jr. et al. Role of arrestins in G-protein-coupled receptor endocytosis. Adv. Pharmacol.42, 429–433 (1998). CASPubMed Google Scholar
Vuong, T. M. & Chabre, M. Deactivation kinetics of the transduction cascade of vision. Proc. Natl Acad. Sci. USA88, 9813–9817 (1991). CASPubMedPubMed Central Google Scholar
Teruel, M. N. & Meyer, T. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell103, 181–184 (2000). CASPubMed Google Scholar
Lillemeier, B. F., Koster, M. & Kerr, I. M. STAT1 from the cell membrane to the DNA. EMBO J.20, 2508–2517 (2001). CASPubMedPubMed Central Google Scholar
Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol.181, 197–203 (1999). CASPubMedPubMed Central Google Scholar
Swaminathan, R., Hoang, C. P. & Verkman, A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP–S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J.72, 1900–1907 (1997). CASPubMedPubMed Central Google Scholar
Theurkauf, W. E. Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science265, 2093–2096 (1994). CASPubMed Google Scholar
Stryer, L. Biochemistry (W. H. Freeman, New York, 1995). Google Scholar
Neves, S. R., Ram, P. T. & Iyengar, R. G protein pathways. Science296, 1636–1639 (2002). CASPubMed Google Scholar
Zubay, G. In vitro synthesis of protein in microbial systems. Annu. Rev. Genet.7, 267–287 (1973). CASPubMed Google Scholar
Rivett, A. J. Regulation of intracellular protein turnover: covalent modification as a mechanism of marking proteins for degradation. Curr. Top. Cell Regul.28, 291–337 (1986). CASPubMed Google Scholar
McAdams, H. H. & Arkin, A. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct.27, 199–224 (1998). CASPubMed Google Scholar
Chang, D. Z., Wu, Z. & Ciardelli, T. L. A point mutation in interleukin-2 that alters ligand internalization. J. Biol. Chem.271, 13349–13355 (1996). CASPubMed Google Scholar
Ferguson, S. S. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev.53, 1–24 (2001). CASPubMed Google Scholar
Jullien, J., Guili, V., Reichardt, L. F. & Rudkin, B. B. Molecular kinetics of nerve growth factor receptor trafficking and activation. J. Biol. Chem.277, 38700–38708 (2002). CASPubMed Google Scholar
Resat, H., Wiley, H. S. & Dixon, D. A. Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations. J. Phys. Chem. B105, 11026–11034 (2001). CAS Google Scholar
Bailey, J. E. Complex biology with no parameters. Nature Biotechnol.19, 503–504 (2001). CAS Google Scholar
Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science283, 381–387 (1999). Describes some of the first large-scale analyses of signalling reactions. CASPubMed Google Scholar
Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB–NF-κB signaling module: temporal control and selective gene activation. Science298, 1241–1245 (2002). Shows the powerful integration of mathematical modelling with experimental investigation. CASPubMed Google Scholar
Lee, E., Salic, A., Kruger, R., Heinrich, R. & Kirschner, M. W. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol.1, 116–132 (2003). CAS Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). CASPubMed Google Scholar
Forster, J., Famili, I., Fu, P., Palsson, B. B. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res.13, 244–253 (2003). CASPubMedPubMed Central Google Scholar
Davidson, E. H. et al. A genomic regulatory network for development. Science295, 1669–1678 (2002). CASPubMed Google Scholar
Steffen, M., Petti, A., Aach, J., D'Haeseleer, P. & Church, G. Automated modelling of signal transduction networks. BMC Bioinformatics3, 34 (2002). PubMedPubMed Central Google Scholar
Krauthammer, M. et al. Of truth and pathways: chasing bits of information through myriads of articles. Bioinformatics18 (Suppl. 1), S249–S257 (2002). PubMed Google Scholar
Cohen, P. Protein kinases — the major drug targets of the twenty-first century? Nature Rev. Drug Discov.1, 309–315 (2002). CAS Google Scholar
Dancey, J. & Sausville, E. A. Issues and progress with protein kinase inhibitors for cancer treatment. Nature Rev. Drug Discov.2, 296–313 (2003). CAS Google Scholar
Lazebnik, Y. Can a biologist fix a radio? — Or, what I learned while studying apoptosis. Cancer Cell2, 179–182 (2002). CASPubMed Google Scholar
Branden, C. & Tooze, J. Introduction to protein structure (Garland Pub., New York, USA, 1999). Google Scholar
Giannakakou, P. et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nature Cell Biol.2, 709–717 (2000). CASPubMed Google Scholar
Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem.278, 20445–20448 (2003). CASPubMed Google Scholar
Heuser, J. E. & Salpeter, S. R. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J. Cell Biol.82, 150–173 (1979). CASPubMed Google Scholar