Spemann's organizer and self-regulation in amphibian embryos (original) (raw)

References

  1. Spemann, H. Embryonic Development and Induction (Yale Univ. New Haven, 1938).
    Book Google Scholar
  2. Morgan, T. H. Half embryos and whole embryos from one of the first two blastomeres. Anat. Anz. 10, 623–638 (1895).
    Google Scholar
  3. Harrison, R. G. Experiments on the development of the fore-limb of Amblystoma, a self-differentiating equipotential system. J. Exp. Zool. 25, 413–461 (1918).
    Article Google Scholar
  4. Stern, C. D. (ed.) Gastrulation (Cold Spring Harbor Laboratory, New York, 2004).
    Google Scholar
  5. Spemann, H. & Mangold, H. Induction of embryonic primordia by implantation of organizers from a different species. Roux's Arch. Entw. Mech. 100, 599–638 (1924).
    Google Scholar
  6. Hamburger, V. The Heritage of Experimental Embryology: Hans Spemann and the Organizer (Oxford Univ., Oxford, UK, 1988).
    Google Scholar
  7. Carrasco, A. E., McGinnis, W., Gehring, W. J. & De Robertis, E. M. Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell 37, 409–414 (1984).
    Article CAS Google Scholar
  8. Cho, K. W. Y., Blumberg, B., Steinbeisser, H. & De Robertis, E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120 (1991).
    Article CAS Google Scholar
  9. Taira, M., Jamrich, M., Good, P. J. & Dawid, I. B. The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev. 6, 356–366 (1992).
    Article CAS Google Scholar
  10. Dirksen, M. L. & Jamrich, M. A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev. 6, 599–608 (1992).
    Article CAS Google Scholar
  11. Niehrs, C., Keller, R., Cho, K. W. Y. & De Robertis, E. M. The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72, 491–503 (1993).
    Article CAS Google Scholar
  12. Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. & De Robertis, E. M. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).
    Article CAS Google Scholar
  13. De Robertis, E. M. in Gastrulation (Stern, C. D. ed.) 581–589 (Cold Spring Harbor Laboratory, New York, 2004).
    Google Scholar
  14. Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840 (1992).
    Article CAS Google Scholar
  15. Harland, R. Neural induction. Curr. Opin. Genet. Dev. 10, 357–362 (2002).
    Article Google Scholar
  16. Lamb, T. M. et al. Neural induction by secreted polypeptide noggin. Science 262, 713–718 (1993).
    Article CAS Google Scholar
  17. Hemmati-Brivanlou, A., Kelly, O. G. & Melton, D. A. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295 (1994).
    Article CAS Google Scholar
  18. De Robertis, E. M., Larraín, J., Oelgeschläger, M. & Wessely, O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nature Rev. Genet. 1, 171–181 (2000).
    Article CAS Google Scholar
  19. De Robertis, E. M. & Kuroda, H. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285–308 (2004).
    Article CAS Google Scholar
  20. Moos, M. Jr., Wang, S. & Krinks, M. Anti-dorsalizing morphogenetic protein is a novel TGF-β homolog expressed in the Spemann organizer. Development 121, 4293–4301 (1995).
    CAS PubMed Google Scholar
  21. Dosch, R. & Niehrs, C. Requirement for anti-dorsalizing morphogenetic protein in organizer patterning. Mech. Dev. 90, 195–203 (2000).
    Article CAS Google Scholar
  22. Niehrs, C. & Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999).
    Article CAS Google Scholar
  23. Bautzman, H., Holtfreter, J., Spemann, H. & Mangold, O. Versuche zur Analyse der Induktionsmittel in der Embryonalentwicklung. Naturwissenschaften 20, 971–974 (1932).
    Article Google Scholar
  24. Holtfreter, J. & Hamburger, V. in Analysis of Development (Willier, B. H., Weiss, P. A. & Hamburger, V. eds) 230–296 (W. B. Saunders, Philadelphia, 1955).
    Google Scholar
  25. Barth, L. G. Neural diffferentiation without organizer. J. Exp. Zool. 87, 371–384 (1941).
    Article Google Scholar
  26. Holtfreter, J. Neural differentiation of ectoderm through exposure to saline solution. J. Exp. Zool. 95, 307–343 (1944).
    Article Google Scholar
  27. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction by the chd and BMP-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995).
    Article CAS Google Scholar
  28. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of Chordin to BMP-4. Cell 86, 589–598 (1996).
    Article CAS Google Scholar
  29. Zimmerman, L. B., De Jesús-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).
    Article CAS Google Scholar
  30. Thompson, T. B., Lerch, T. F., Cook, R. W., Woodruff, T. K. & Jardetzky, T. S. The structure of the follistatin:activin complex reveals antagonism of both Type I and Type II receptor binding. Dev. Cell 9, 535–543 (2005).
    Article CAS Google Scholar
  31. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).
    Article CAS Google Scholar
  32. Oelgeschläger, M., Kuroda, H., Reversade, B. & De Robertis, E. M. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev. Cell 4, 219–230 (2003).
    Article Google Scholar
  33. Bachiller, D. et al. The organizer secreted factors Chordin and Noggin are required for forebrain development in the mouse. Nature 403, 658–661 (2000).
    Article CAS Google Scholar
  34. Khokha, M. K., Yeh, J., Grammer, T. C. & Harland, R. M. Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. Dev. Cell 8, 401–411 (2005).
    Article CAS Google Scholar
  35. Kuroda, H., Wessely, O. & Robertis, E. M. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, β-catenin, and Cerberus. PLoS Biol. 2, 623–633 (2004).
    Article CAS Google Scholar
  36. Grunz, H. & Tacke, L. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ. Dev. 28, 211–217 (1989).
    Article CAS Google Scholar
  37. Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).
    Article CAS Google Scholar
  38. Kuroda, H., Fuentealba, L., Ikeda, A., Reversade, B. & De Robertis, E. M. Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev. 19, 1022–1027 (2005).
    Article CAS Google Scholar
  39. Massagué, J. Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev. 17, 3023–3028 (2003).
    Article Google Scholar
  40. Stern, C. D. Neural induction: old problem, new findings, yet more questions. Development 132, 2007–2021 (2005).
    Article CAS Google Scholar
  41. Reversade, B., Kuroda, H., Lee, H., Mays, A. & De Robertis, E. M. Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132, 3381–3392 (2005).
    Article CAS Google Scholar
  42. Reversade, B. & De Robertis, E. M. Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123, 1147–1160 (2005).
    Article CAS Google Scholar
  43. Piccolo, S. et al. Cleavage of Chordin by the Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416 (1997).
    Article CAS Google Scholar
  44. Dale, L., Evans, W. & Goodman, S. A. Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. Mech. Dev. 119, 177–190 (2002).
    Article CAS Google Scholar
  45. Lee, H. X., Ambrosio, A. L., Reversade, B. & De Robertis, E. M. Embryonic dorsal–ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell 124, 147–159 (2006).
    Article CAS Google Scholar
  46. Collavin, L. & Kirschner, M. W. The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm. Development 130, 805–816 (2003).
    Article CAS Google Scholar
  47. Yabe, T. et al. Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development 130, 2705–2716 (2003).
    Article CAS Google Scholar
  48. Martyn, U. & Schulte-Merker, S. The ventralized ogon mutant phenotype is caused by a mutation in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. Dev. Biol. 260, 58–67 (2003).
    Article CAS Google Scholar
  49. De Robertis, E. M., Morita, E. A. & Cho, K. W. Y. Gradient fields and homeobox genes. Development 112, 669–678 (1991).
    CAS PubMed Google Scholar
  50. Morgan, T. H. Embryology and Genetics (Columbia Univ., New York, 1934).
    Google Scholar
  51. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. Royal Soc. 237, 37–72 (1952).
    Google Scholar
  52. Bouwmeester, T., Kim, S. H., Sasai, Y., Lu, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).
    Article CAS Google Scholar
  53. Beddington, R. S. P. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).
    Article CAS Google Scholar
  54. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).
    Article CAS Google Scholar
  55. Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt–β-catenin signalling. Nature 417, 664–667 (2002).
    Article CAS Google Scholar
  56. Oelgeschläger, M., Larraín, J., Geissert, D. & De Robertis, E. M. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405, 757–763 (2000).
    Article Google Scholar
  57. Little, S. C. & Mullins, M. C. Twisted gastrulation promotes BMP signaling in zebrafish dorsal–ventral axial patterning. Development 131, 5825–5835 (2004).
    Article CAS Google Scholar
  58. Xie, J. & Fisher, S. Twisted gastrulation enhances BMP signaling through chordin dependent and independent mechanisms. Development 132, 383–391 (2005).
    Article CAS Google Scholar
  59. Onichtchouk, D. et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 401, 480–485 (1999).
    Article CAS Google Scholar
  60. Sadler, T. W. Langman's Medical Embryology 9th edn (Lippincott Williams & Wilkins, Baltimore, 2004).
    Google Scholar

Download references