The model organism as a system: integrating 'omics' data sets (original) (raw)
Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science269, 496–512 (1995). CASPubMed Google Scholar
Ehrenman, G. Mining what others miss: highlighting the subtleties in 1012 bytes of data, technology tries to clear up its own complex mess. Mechanical Engineering-CIME127, 26 (2005). Article Google Scholar
Hays, C. L. What Wal-Mart Knows About Customers' Habits. New York Times (14 Nov 2004). Google Scholar
Hand, D. J., Blunt, G., Kelly, M. G. & Adams, N. M. Data mining for fun and profit. Stat. Sci.15, 111–131 (2000). Article Google Scholar
Kluger, Y., Yu, H., Qian, J. & Gerstein, M. Relationship between gene co-expression and probe localization on microarray slides. BMC Genomics4, 49 (2003). ArticlePubMedPubMed Central Google Scholar
Quackenbush, J. Data standards for 'omic' science. Nature Biotechnol.22, 613–614 (2004). A short, incisive report that introduces some of the problems that the omics sciences face with regards to data quality and representation standards. ArticleCAS Google Scholar
Bader, G. D. & Hogue, C. W. Analyzing yeast protein–protein interaction data obtained from different sources. Nature Biotechnol.20, 991–997 (2002). ArticleCAS Google Scholar
Ge, H., Walhout, A. J. & Vidal, M. Integrating 'omic' information: a bridge between genomics and systems biology. Trends Genet.19, 551–560 (2003). ArticleCASPubMed Google Scholar
Liolios, K., Tavernarakis, N., Hugenholtz, P. & Kyrpides, N. C. The genomes on line database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res.34, D332–D334 (2006). ArticleCASPubMed Google Scholar
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature423, 241–254 (2003). ArticleCASPubMed Google Scholar
Chimpanzee Sequencing And Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature437, 69–87 (2005).
Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nature Rev. Genet.6, 361–375 (2005). ArticleCASPubMed Google Scholar
Tompa, M. et al. Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnol.23, 137–144 (2005). ArticleCAS Google Scholar
Brasch, M. A., Hartley, J. L. & Vidal, M. ORFeome cloning and systems biology: standardized mass production of the parts from the parts-list. Genome Res.14, 2001–2009 (2004). ArticleCASPubMed Google Scholar
Hardiman, G. Microarray platforms — comparisons and contrasts. Pharmacogenomics5, 487–502 (2004). ArticleCASPubMed Google Scholar
Harbers, M. & Carninci, P. Tag-based approaches for transcriptome research and genome annotation. Nature Methods2, 495–502 (2005). ArticleCASPubMed Google Scholar
Li, L. & Akashi, K. Unraveling the molecular components and genetic blueprints of stem cells. Biotechniques35, 1233–1239 (2003). ArticleCASPubMed Google Scholar
Rhodes, D. R. & Chinnaiyan, A. M. Integrative analysis of the cancer transcriptome. Nature Genet.37, S31–S37 (2005). ArticleCASPubMed Google Scholar
Jenner, R. G. & Young, R. A. Insights into host responses against pathogens from transcriptional profiling. Nature Rev. Microbiol.3, 281–294 (2005). ArticleCAS Google Scholar
Mata, J., Marguerat, S. & Bahler, J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem. Sci.30, 506–514 (2005). ArticleCASPubMed Google Scholar
Patterson, S. D. & Aebersold, R. H. Proteomics: the first decade and beyond. Nature Genet.33 (Suppl.), 311–323 (2003). ArticleCASPubMed Google Scholar
Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature425, 737–741 (2003). ArticleCASPubMed Google Scholar
Yates, J. R. 3rd, Gilchrist, A., Howell, K. E. & Bergeron, J. J. Proteomics of organelles and large cellular structures. Nature Rev. Mol. Cell Biol.6, 702–714 (2005). ArticleCAS Google Scholar
Kuster, B., Schirle, M., Mallick, P. & Aebersold, R. Scoring proteomes with proteotypic peptide probes. Nature Rev. Mol. Cell Biol.6, 577–583 (2005). ArticleCAS Google Scholar
Griffin, J. L. & Bollard, M. E. Metabonomics: its potential as a tool in toxicology for safety assessment and data integration. Curr. Drug Metab.5, 389–398 (2004). ArticleCASPubMed Google Scholar
Nielsen, J. & Oliver, S. The next wave in metabolome analysis. Trends Biotechnol.23, 544–546 (2005). ArticleCASPubMed Google Scholar
Dunn, W. B., Bailey, N. J. & Johnson, H. E. Measuring the metabolome: current analytical technologies. Analyst130, 606–625 (2005). ArticleCASPubMed Google Scholar
Fridman, E. & Pichersky, E. Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr. Opin. Plant Biol.8, 242–248 (2005). ArticleCASPubMed Google Scholar
Markuszewski, M. J., Szczykowska, M., Siluk, D. & Kaliszan, R. Human red blood cells targeted metabolome analysis of glycolysis cycle metabolites by capillary electrophoresis using an indirect photometric detection method. J. Pharm. Biomed. Anal.39, 636–642 (2005). ArticleCASPubMed Google Scholar
Wu, L. et al. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal. Biochem.336, 164–171 (2005). ArticleCASPubMed Google Scholar
Memelink, J. Tailoring the plant metabolome without a loose stitch. Trends Plant Sci.10, 305–307 (2005). ArticleCASPubMed Google Scholar
Gibney, M. J. et al. Metabolomics in human nutrition: opportunities and challenges. Am. J. Clin. Nutr.82, 497–503 (2005). ArticleCASPubMed Google Scholar
Arita, M., Robert, M. & Tomita, M. All systems go: launching cell simulation fueled by integrated experimental biology data. Curr. Opin. Biotechnol.16, 344–349 (2005). ArticleCASPubMed Google Scholar
Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature425, 686–691 (2003). ArticleCASPubMed Google Scholar
Guda, C. & Subramaniam, S. pTARGET: a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics21, 3963–3969 (2005). ArticleCASPubMed Google Scholar
Coulton, G. Are histochemistry and cytochemistry 'Omics'? J. Mol. Histol.35, 603–613 (2004). PubMed Google Scholar
Wenk, M. R. The emerging field of lipidomics. Nature Rev. Drug Discov.4, 594–610 (2005). ArticleCAS Google Scholar
Shriver, Z., Raguram, S. & Sasisekharan, R. Glycomics: a pathway to a class of new and improved therapeutics. Nature Rev. Drug Discov.3, 863–873 (2004). ArticleCAS Google Scholar
Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics85, 1–15 (2005). ArticleCASPubMed Google Scholar
Buck, M. J. & Lieb, J. D. ChIP–chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics83, 349–360 (2004). ArticleCASPubMed Google Scholar
Herring, C. D. et al. Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J. Bacteriol.187, 6166–6174 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pokholok, D. K., Hannett, N. M. & Young, R. A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell9, 799–809 (2002). ArticleCASPubMed Google Scholar
Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA100, 8164–8169 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell116, 499–509 (2004). ArticleCASPubMed Google Scholar
Zhang, X. et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl Acad. Sci. USA102, 4459–4464 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell122, 517–527 (2005). ArticleCASPubMed Google Scholar
Cusick, M., Klitgord, N., Vidal, M. & Hill, D. E. Interactome: gateway into systems biology. Hum. Mol. Genet.14, R171–R181 (2005). ArticleCASPubMed Google Scholar
Fields, S. High-throughput two-hybrid analysis. The promise and the peril. FEBS J.272, 5391–5399 (2005). ArticleCASPubMed Google Scholar
Ben-Hur, A. & Noble, W. S. Kernel methods for predicting protein–protein interactions. Bioinformatics21 (Suppl. 1), i38–i46 (2005). ArticleCASPubMed Google Scholar
Pazos, F., Ranea, J. A., Juan, D. & Sternberg, M. J. Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J. Mol. Biol.352, 1002–1015 (2005). ArticleCASPubMed Google Scholar
Droit, A., Poirier, G. G. & Hunter, J. M. Experimental and bioinformatic approaches for interrogating protein–protein interactions to determine protein function. J. Mol. Endocrinol.34, 263–280 (2005). ArticleCASPubMed Google Scholar
Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature433, 531–537 (2005). ArticleCASPubMed Google Scholar
Rain, J. C. et al. The protein–protein interaction map of Helicobacter pylori. Nature409, 211–215 (2001). ArticleCASPubMed Google Scholar
Lacount, D. J. et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature438, 103–107 (2005). ArticleCASPubMed Google Scholar
Ito, T. et al. Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol. Cell Proteomics1, 561–566 (2002). ArticleCASPubMed Google Scholar
Stelzl, U. et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell122, 957–968 (2005). ArticleCASPubMed Google Scholar
Scholtens, D., Vidal, M. & Gentleman, R. Local modeling of global interactome networks. Bioinformatics21, 3548–3557 (2005). ArticleCASPubMed Google Scholar
Hahn, M. W., Conant, G. C. & Wagner, A. Molecular evolution in large genetic networks: does connectivity equal constraint? J. Mol. Evol.58, 203–211 (2004). ArticleCASPubMed Google Scholar
Sprinzak, E., Sattath, S. & Margalit, H. How reliable are experimental protein–protein interaction data? J. Mol. Biol.327, 919–923 (2003). ArticleCASPubMed Google Scholar
Roehrl, M. H., Wang, J. Y. & Wagner, G. A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein–protein interactions by fluorescence polarization. Biochemistry43, 16056–16066 (2004). ArticleCASPubMed Google Scholar
Bochner, B. R. New technologies to assess genotype–phenotype relationships. Nature Rev. Genet.4, 309–314 (2003). ArticleCASPubMed Google Scholar
Bredel, M. & Jacoby, E. Chemogenomics: an emerging strategy for rapid target and drug discovery. Nature Rev. Genet.5, 262–275 (2004). ArticleCASPubMed Google Scholar
Dykxhoorn, D. M. & Lieberman, J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med.56, 401–423 (2005). ArticleCASPubMed Google Scholar
Tong, A. H. et al. Global mapping of the yeast genetic interaction network. Science303, 808–813 (2004). ArticleCASPubMed Google Scholar
Sauer, U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol.15, 58–63 (2004). ArticleCASPubMed Google Scholar
Li, H. & Wang, W. Dissecting the transcription networks of a cell using computational genomics. Curr. Opin. Genet. Dev.13, 611–616 (2003). ArticleCASPubMed Google Scholar
Wang, W. et al. Inference of combinatorial regulation in yeast transcriptional networks: a case study of sporulation. Proc. Natl Acad. Sci. USA102, 1998–2003 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnol.21, 1337–1342 (2003). Introduces the GRAM algorithm that can be used to identify gene modules or groups of co-expressed genes that share a common transcriptional regulator. This approach is useful for inferring transcriptional-regulatory networks from omics data sets. ArticleCAS Google Scholar
Gat-Viks, I., Tanay, A. & Shamir, R. Modeling and analysis of heterogeneous regulation in biological networks. J. Comput. Biol.11, 1034–1049 (2004). ArticleCASPubMed Google Scholar
Yeang, C. H. et al. Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol.6, R62 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jansen, R. et al. A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science302, 449–453 (2003). ArticleCASPubMed Google Scholar
Rhodes, D. R. et al. Probabilistic model of the human protein–protein interaction network. Nature Biotechnol.23, 951–959 (2005). This study illustrates the use of a Bayesian classification strategy to predict the structure of molecular networks — orthologous protein–protein interactions, transcriptomics and genomics data were integrated to develop a Bayesian model that predicts 40,000 human protein–protein interactions. ArticleCAS Google Scholar
Yeger-Lotem, E. et al. Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc. Natl Acad. Sci. USA101, 5934–5939 (2004). This work presents a methodology to decompose cellular networks into their constituent basic building blocks, or network motifs. Although the technique can be applied to networks of any type, this study focuses on the analysis of aS. cerevisiaenetwork derived from genome-scale protein–protein- and protein–DNA-interaction data sets. ArticleCASPubMedPubMed Central Google Scholar
Yeger-Lotem, E. & Margalit, H. Detection of regulatory circuits by integrating the cellular networks of protein–protein interactions and transcription regulation. Nucleic Acids Res.31, 6053–6061 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol.4, 6 (2005). ArticleCASPubMedPubMed Central Google Scholar
Luscombe, N. M. et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature431, 308–312 (2004). ArticleCASPubMed Google Scholar
Han, J. D. et al. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature430, 88–93 (2004). ArticleCASPubMed Google Scholar
Tanay, A., Sharan, R., Kupiec, M. & Shamir, R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl Acad. Sci. USA101, 2981–2986 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A. F. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics18 (Suppl. 1), S233–S240 (2002). ArticlePubMed Google Scholar
Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nature Biotechnol.23, 561–566 (2005). ArticleCAS Google Scholar
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res.32, D277–D280 (2004). ArticleCASPubMedPubMed Central Google Scholar
Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol.2, 886–897 (2004). This review discusses the COBRA approach to modelling genome-scale molecular networks by integrating genome-scale data sets with a specific emphasis on the many recent analytical methods that are associated with these models for studying characteristics and capabilities of microorganisms. ArticleCAS Google Scholar
Reed, J. L., Famili, I., Thiele, I. & Palsson, B. O. Towards multidimensional genome annotation. Nature Rev. Genet.7, 130–141 (2006). ArticleCASPubMed Google Scholar
Palsson, B. Two-dimensional annotation of genomes. Nature Biotechnol.22, 1218–1219 (2004). ArticleCAS Google Scholar
Patil, K. R., Akesson, M. & Nielsen, J. Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol.15, 64–69 (2004). ArticleCASPubMed Google Scholar
Patil, K. R. & Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl Acad. Sci. USA102, 2685–2689 (2005). ArticleCASPubMedPubMed Central Google Scholar
Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. Integrating high-throughput and computational data elucidates bacterial networks. Nature429, 92–96 (2004). ArticleCASPubMed Google Scholar
Papin, J. A. & Palsson, B. O. The JAK–STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys. J.87, 37–46 (2004). ArticleCASPubMedPubMed Central Google Scholar
Longabaugh, W. J., Davidson, E. H. & Bolouri, H. Computational representation of developmental genetic regulatory networks. Dev. Biol.283, 1–16 (2005). The reconstruction and modelling of developmental gene-regulatory networks is detailed by integrating various data types using the BioTapestry modelling software. ArticleCASPubMed Google Scholar
Saghatelian, A. & Cravatt, B. F. Global strategies to integrate the proteome and metabolome. Curr. Opin. Chem. Biol.9, 62–68 (2005). ArticleCASPubMed Google Scholar
Begley, T. J., Rosenbach, A. S., Ideker, T. & Samson, L. D. Hot spots for modulating toxicity identified by genomic phenotyping and localization mapping. Mol. Cell16, 117–125 (2004). ArticleCASPubMed Google Scholar
Haugen, A. C. et al. Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol.5, R95 (2004). ArticlePubMedPubMed Central Google Scholar
Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. Science308, 1164–1167 (2005). ArticleCASPubMed Google Scholar
Tewari, M. et al. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-β signaling network. Mol. Cell13, 469–482 (2004). ArticleCASPubMed Google Scholar
Boulton, S. J. et al. Combined functional genomic maps of the C. elegans DNA damage response. Science295, 127–131 (2002). ArticleCASPubMed Google Scholar
Gunsalus, K. C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature436, 861–865 (2005). This study integrated transcriptomics, protein–protein interactions and RNAi-based phenomics to map the molecular network topology of genes associated with early embryogenesis inC. elegans. The resulting structure is used to infer potential network organizational and functional properties such as interacting molecular complexes and cellular-process crosstalk. ArticleCASPubMed Google Scholar
Oksman-Caldentey, K. M. & Saito, K. Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr. Opin. Biotechnol.16, 174–179 (2005). ArticleCASPubMed Google Scholar
Kristensen, C. et al. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl Acad. Sci. USA102, 1779–1784 (2005). This study used omics data integration to diagnose unexpected impacts of genomic manipulations on the phenotype of the organism. Metabolomic and transcriptomic data were integrated to assess the systems-wide impact of introducing exogenous high-flux pathways toA. thaliana. ArticleCASPubMedPubMed Central Google Scholar
Hirai, M. Y. et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA101, 10205–10210 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ippolito, J. E. et al. An integrated functional genomics and metabolomics approach for defining poor prognosis in human neuroendocrine cancers. Proc. Natl Acad. Sci. USA102, 9901–9906 (2005). The utility of integrating omics data to identify biomarkers is shown in this work, which integrated transcriptomics and metabolomics data to determine a molecular signature that is associated with poor-prognosis human neuroendocrine cancers. ArticleCASPubMedPubMed Central Google Scholar
Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science296, 340–343 (2002). ArticleCASPubMed Google Scholar
Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science309, 1850–1854 (2005). ArticleCASPubMed Google Scholar
Ihmels, J. et al. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science309, 938–940 (2005). Genomics and transcriptomics data are integrated to identify acis-regulatory element associated with the evolutionary emergence of rapid anaerobic growth capacity in certain yeast species. This study highlights the potential of integrating omics data sets to address fundamental evolutionary questions. ArticleCASPubMed Google Scholar
Tanay, A., Regev, A. & Shamir, R. Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc. Natl Acad. Sci. USA102, 7203–7208 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13, 2498–2504 (2003). One of the most widely used and broadly accessible software packages designed to facilitate omics data integration and analysis, known as Cytoscape, is detailed in this report. ArticleCASPubMedPubMed Central Google Scholar
Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics19, 524–531 (2003). ArticleCASPubMed Google Scholar
Novere, N. L. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nature Biotechnol.23, 1509–1515 (2005). ArticleCAS Google Scholar
Stierum, R., Heijne, W., Kienhuis, A., van Ommen, B. & Groten, J. Toxicogenomics concepts and applications to study hepatic effects of food additives and chemicals. Toxicol. Appl. Pharmacol.207, 179–188 (2005). ArticleCASPubMed Google Scholar
Corthesy-Theulaz, I. et al. Nutrigenomics: the impact of biomics technology on nutrition research. Ann. Nutr. Metab.49, 355–365 (2005). ArticleCASPubMed Google Scholar
Desiere, F. Towards a systems biology understanding of human health: interplay between genotype, environment and nutrition. Biotechnol. Annu. Rev.10, 51–84 (2004). ArticleCASPubMed Google Scholar
Roche, H. M., Phillips, C. & Gibney, M. J. The metabolic syndrome: the crossroads of diet and genetics. Proc. Nutr. Soc.64, 371–377 (2005). ArticleCASPubMed Google Scholar
Ibrahim, S. M. & Gold, R. Genomics, proteomics, metabolomics: what is in a word for multiple sclerosis? Curr. Opin. Neurol.18, 231–235 (2005). ArticleCASPubMed Google Scholar
Nikolsky, Y., Nikolskaya, T. & Bugrim, A. Biological networks and analysis of experimental data in drug discovery. Drug Discov. Today10, 653–662 (2005). ArticleCASPubMed Google Scholar
Billings, P. R. et al. Ready for genomic medicine? Perspectives of health care decision makers. Arch. Intern. Med.165, 1917–1919 (2005). ArticlePubMed Google Scholar
Deeds, E. J., Ashenberg, O. & Shakhnovich, E. I. A simple physical model for scaling in protein–protein interaction networks. Proc. Natl Acad. Sci. USA103, 311–316 (2006). ArticleCASPubMed Google Scholar