Phylogenomics and the reconstruction of the tree of life (original) (raw)
Darwin, C. The Origin of Species by Means of Natural Selection (Murray, London, 1859). Google Scholar
Haeckel, E. Generelle Morphologie der Organismen: Allgemeine Grundzüge der Organischen Formen-Wissenschaft, Mechanisch Begründet durch die von Charles Darwin Reformirte Descendenz–Theorie (Georg Reimer, Berlin, 1866) (in German). Book Google Scholar
Van Niel, C. B. in Perspectives and Horizons in Microbiology (ed. Waksman, S. S.) 3–12 (Rutgers Univ. Press, New Brunswick, 1955). Google Scholar
Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol.8, 357–366 (1965). ArticleCASPubMed Google Scholar
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA74, 5088–5090 (1977). ArticleCASPubMedPubMed Central Google Scholar
Eisen, J. A. & Fraser, C. M. Phylogenomics: intersection of evolution and genomics. Science300, 1706–1707 (2003). ArticleCASPubMed Google Scholar
Philippe, H. & Laurent, J. How good are deep phylogenetic trees? Curr. Opin. Genet. Dev.8, 616–623 (1998). ArticleCASPubMed Google Scholar
Rokas, A. & Holland, P. W. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol.15, 454–459 (2000). ArticleCASPubMed Google Scholar
Gribaldo, S. & Philippe, H. Ancient phylogenetic relationships. Theor. Popul. Biol.61, 391–408 (2002). ArticlePubMed Google Scholar
Holder, M. & Lewis, P. O. Phylogeny estimation: traditional and Bayesian approaches. Nature Rev. Genet.4, 275–284 (2003). ArticleCASPubMed Google Scholar
Qiu, Y. L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature402, 404–407 (1999). ArticleCASPubMed Google Scholar
Moreira, D., Le Guyader, H. & Philippe, H. The origin of red algae: implications for the evolution of chloroplasts. Nature405, 69–72 (2000). ArticleCASPubMed Google Scholar
Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science290, 972–977 (2000). ArticleCASPubMed Google Scholar
Madsen, O. et al. Parallel adaptive radiations in two major clades of placental mammals. Nature409, 610–614 (2001). ArticleCASPubMed Google Scholar
Murphy, W. J. et al. Molecular phylogenetics and the origins of placental mammals. Nature409, 614–618 (2001). ArticleCASPubMed Google Scholar
Bapteste, E. et al. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc. Natl Acad. Sci. USA99, 1414–1419 (2002). The first phylogenomic study based on the supermatrix approach that includes more than 100 genes for a relatively broad taxon sampling of eukaryotes. ArticleCASPubMedPubMed Central Google Scholar
Lerat, E., Daubin, V. & Moran, N. A. From gene trees to organismal phylogeny in prokaryotes: the case of the γ-Proteobacteria. PLoS Biol.1, e19 (2003). ArticlePubMedPubMed Central Google Scholar
Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature425, 798–804 (2003). An empirical study on the phylogenomics of yeasts, which shows that, for the same number of positions, a robust phylogenetic tree is recovered more rapidly with randomly selected positions than with entire genes. ArticleCASPubMed Google Scholar
Philippe, H. et al. Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol. Biol. Evol.21, 1740–1752 (2004). ArticleCASPubMed Google Scholar
Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res.14, 29–36 (2004). ArticleCASPubMedPubMed Central Google Scholar
Driskell, A. C. et al. Prospects for building the tree of life from large sequence databases. Science306, 1172–1174 (2004). References 20 and 22 demonstrate the robustness of the supermatrix approach to a surprisingly high amount of missing data in phylogenomic analyses. ArticleCASPubMed Google Scholar
Philippe, H., Lartillot, N. & Brinkmann, H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa and Protostomia. Mol. Biol. Evol. 9 February 2005 (10.1093/molbev/msi111). This study demonstrates the impact of the long-branch attraction artefact in phylogenomics and provides evidence for the new animal phylogeny based on relatively large species sampling.
Lecointre, G., Philippe, H., Le, H. L. V. & Le Guyader, H. Species sampling has a major impact on phylogenetic inference. Mol. Phylogenet. Evol.2, 205–224 (1993). ArticleCASPubMed Google Scholar
Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol.47, 9–17 (1998). ArticleCASPubMed Google Scholar
Hillis, D. M., Pollock, D. D., McGuire, J. A. & Zwickl, D. J. Is sparse taxon sampling a problem for phylogenetic inference? Syst. Biol.52, 124–126 (2003). ArticlePubMed Google Scholar
Rosenberg, M. S. & Kumar, S. Taxon sampling, bioinformatics, and phylogenomics. Syst. Biol.52, 119–124 (2003). References 27 and 28 present a recent exchange on the relative importance of character and taxon sampling for phylogenetic inference. ArticlePubMed Google Scholar
Philippe, H. Rodent monophyly: pitfalls of molecular phylogenies. J. Mol. Evol.45, 712–715 (1997). CASPubMed Google Scholar
Lin, Y. -H. et al. Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol. Biol. Evol.19, 2060–2070 (2002). ArticleCASPubMed Google Scholar
Philip, G. K., Creevey, C. J. & McInerney, J. O. The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Mol. Biol. Evol. 9 February 2005 (10.1093/molbev/msi102).
Sanderson, M. J., Driskell, A. C., Ree, R. H., Eulenstein, O. & Langley, S. Obtaining maximal concatenated phylogenetic data sets from large sequence databases. Mol. Biol. Evol.20, 1036–1042 (2003). ArticleCASPubMed Google Scholar
Kluge, A. G. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool.38, 7–25 (1989). Article Google Scholar
Felsenstein, J. Inferring Phylogenies (Sinauer Associates, Sunderland, Massachusetts, 2004). Google Scholar
Gatesy, J., Matthee, C., DeSalle, R. & Hayashi, C. Resolution of a supertree/supermatrix paradox. Syst. Biol.51, 652–664 (2002). ArticlePubMed Google Scholar
Wiens, J. J. Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol.52, 528–538 (2003). ArticlePubMed Google Scholar
Bininda-Emonds, O. R. P., Gittleman, J. L. & Steel, M. A. The (super)tree of life: procedures, problems, and prospects. Annu. Rev. Ecol. Syst.33, 265–289 (2002). Article Google Scholar
Baum, B. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon41, 3–10 (1992). Article Google Scholar
Ragan, M. A. Phylogenetic inference based on matrix representation of trees. Mol. Phylogenet. Evol.1, 53–58 (1992). ArticleCASPubMed Google Scholar
Bininda-Emonds, O. R. P. The evolution of supertrees. Trends Ecol. Evol.19, 315–322 (2004). ArticlePubMed Google Scholar
Liu, F. G. et al. Molecular and morphological supertrees for eutherian (placental) mammals. Science291, 1786–1789 (2001). ArticleCASPubMed Google Scholar
Daubin, V., Gouy, M. & Perriére, G. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res.12, 1080–1090 (2002). The first application of a supertree method in phylogenomics showing its usefulness for reconstructing bacterial phylogeny in the presence of horizontal gene transfer. ArticleCASPubMedPubMed Central Google Scholar
Gatesy, J., Baker, R. H. & Hayashi, C. Inconsistencies in arguments for the supertree approach: supermatrices versus supertrees of Crocodylia. Syst. Biol.53, 342–355 (2004). ArticlePubMed Google Scholar
Salamin, N., Hodkinson, T. R. & Savolainen, V. Building supertrees: an empirical assessment using the grass family (Poaceae). Syst. Biol.51, 136–150 (2002). ArticlePubMed Google Scholar
Bininda-Emonds, O. R. P. Trees versus characters and the supertree/supermatrix 'paradox'. Syst. Biol.53, 356–359 (2004). ArticlePubMed Google Scholar
Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence data sets. Nature Genet.28, 281–285 (2001). ArticleCASPubMed Google Scholar
Brochier, C., Bapteste, E., Moreira, D. & Philippe, H. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet.18, 1–5 (2002). A comprehensive study of bacterial phylogeny that is based on the supermatrix approach, using statistical methods to detect and exclude genes that are probably affected by horizontal transfer. ArticleCASPubMed Google Scholar
Yang, Z. On the best evolutionary rate for phylogenetic analysis. Syst. Biol.47, 125–133 (1998). ArticleCASPubMed Google Scholar
Wolf, Y. I., Rogozin, I. B., Grishin, N. V. & Koonin, E. V. Genome trees and the tree of life. Trends Genet.18, 472–479 (2002). ArticleCASPubMed Google Scholar
Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet.21, 108–110 (1999). ArticleCASPubMed Google Scholar
Tekaia, F., Lazcano, A. & Dujon, B. The genomic tree as revealed from whole proteome comparisons. Genome Res.9, 550–557 (1999). CASPubMedPubMed Central Google Scholar
Clarke, G. D., Beiko, R. G., Ragan, M. A. & Charlebois, R. L. Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized BLASTP scores. J. Bacteriol.184, 2072–2080 (2002). ArticleCASPubMedPubMed Central Google Scholar
Korbel, J. O., Snel, B., Huynen, M. A. & Bork, P. SHOT: a web server for the construction of genome phylogenies. Trends Genet.18, 158–162 (2002). This paper presents reconstruction of prokaryotic phylogenies based on gene content and the conservation of gene pairs, with a critical view on the impact of horizontal gene transfer on their accuracy. ArticleCASPubMed Google Scholar
Dutilh, B. E., Huynen, M. A., Bruno, W. J. & Snel, B. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J. Mol. Evol.58, 527–539 (2004). ArticleCASPubMed Google Scholar
Lin, J. & Gerstein, M. Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res.10, 808–818 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L. & Koonin, E. V. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol.1, 8 (2001). A study of bacterial phylogenomics using five independent reconstruction methods to corroborate the emergence of a recurrent phylogenetic pattern. ArticleCASPubMedPubMed Central Google Scholar
Fitz-Gibbon, S. T. & House, C. H. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res.27, 4218–4222 (1999). ArticleCASPubMedPubMed Central Google Scholar
House, C. H. & Fitz-Gibbon, S. T. Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J. Mol. Evol.54, 539–547 (2002). ArticleCASPubMed Google Scholar
House, C. H., Runnegar, B. & Fitz-Gibbon, S. T. Geobiological analysis using whole genome-based tree building applied to the Bacteria, Archaea, and Eukarya. Geobiology1, 15–26 (2003). ArticleCAS Google Scholar
Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol.21, 681–690 (2004). ArticleCASPubMed Google Scholar
Gu, X. & Zhang, H. Genome phylogenetic analysis based on extended gene contents. Mol. Biol. Evol.21, 1401–1408 (2004). ArticleCASPubMed Google Scholar
Huson, D. H. & Steel, M. Phylogenetic trees based on gene content. Bioinformatics20, 2044–2049 (2004). ArticleCASPubMed Google Scholar
Sankoff, D. et al. Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Natl Acad. Sci. USA89, 6575–6579 (1992). ArticleCASPubMedPubMed Central Google Scholar
Hannenhalli, S. & Pevzner, P. A. Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM46, 1–27 (1999). Article Google Scholar
Blanchette, M., Kunisawa, T. & Sankoff, D. Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol.49, 193–203 (1999). ArticleCASPubMed Google Scholar
Moret, B., Tang, J. & Warnow, T. in Mathematics of Evolution and Phylogeny (ed. Gascuel, O.) 321–352 (Oxford Univ. Press, Oxford, 2005). Google Scholar
Koski, L. B. & Golding, G. B. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol.52, 540–542 (2001). Article Google Scholar
Philippe, H. & Douady, C. J. Horizontal gene transfer and phylogenetics. Curr. Opin. Microbiol.6, 498–505 (2003). ArticleCASPubMed Google Scholar
Fitch, W. M. Distinguishing homologous from analogous proteins. Syst. Zool.19, 99–113 (1970). ArticleCASPubMed Google Scholar
Stanhope, M. J. et al. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature411, 940–944 (2001). ArticleCASPubMed Google Scholar
Campbell, A., Mrázek, J. & Karlin, S. Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc. Natl Acad. Sci. USA96, 9184–9189 (1999). ArticleCASPubMedPubMed Central Google Scholar
Edwards, S. V., Fertil, B., Giron, A. & Deschavanne, P. J. A genomic schism in birds revealed by phylogenetic analysis of DNA strings. Syst. Biol.51, 599–613 (2002). ArticlePubMed Google Scholar
Pride, D. T., Meinersmann, R. J., Wassenaar, T. M. & Blaser, M. J. Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res.13, 145–158 (2003). A study showing that phylogenetic signal can be retrieved from the distribution of oligonucleotides in prokaryote genomes. ArticleCASPubMedPubMed Central Google Scholar
Qi, J., Wang, B. & Hao, B. I. Whole proteome prokaryote phylogeny without sequence alignment: a K-string composition approach. J. Mol. Evol.58, 1–11 (2004). ArticleCASPubMed Google Scholar
Nikaido, M., Rooney, A. P. & Okada, N. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippopotamuses are the closest extant relatives of whales. Proc. Natl Acad. Sci. USA96, 10261–10266 (1999). ArticleCASPubMedPubMed Central Google Scholar
van Dijk, M. A. et al. Protein sequence signatures support the African clade of mammals. Proc. Natl Acad. Sci. USA98, 188–193 (2001). ArticleCASPubMed Google Scholar
Venkatesh, B., Erdmann, M. V. & Brenner, S. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc. Natl Acad. Sci. USA98, 11382–11387 (2001). ArticleCASPubMedPubMed Central Google Scholar
Philippe, H. et al. Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc. R. Soc. Lond. B267, 1213–1221 (2000). ArticleCAS Google Scholar
Stechmann, A. & Cavalier-Smith, T. Rooting the eukaryote tree by using a derived gene fusion. Science297, 89–91 (2002). ArticleCASPubMed Google Scholar
Snel, B., Bork, P. & Huynen, M. Genome evolution. Gene fusion versus gene fission. Trends Genet.16, 9–11 (2000). ArticleCASPubMed Google Scholar
Bapteste, E. & Philippe, H. The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol. Biol. Evol.19, 972–977 (2002). ArticleCASPubMed Google Scholar
Krzywinski, J. & Besansky, N. J. Frequent intron loss in the White gene: a cautionary tale for phylogeneticists. Mol. Biol. Evol.19, 362–366 (2002). ArticleCASPubMed Google Scholar
Pecon-Slattery, J., Pearks Wilkerson, A. J., Murphy, W. J. & O'Brien, S, J. Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family Felidae as a species tree. Mol. Biol. Evol.21, 2299–2309 (2004). ArticleCASPubMed Google Scholar
Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science294, 2348–2351 (2001). ArticleCASPubMed Google Scholar
Amrine-Madsen, H., Koepfli, K. P., Wayne, R. K. & Springer, M. S. A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol. Phylogenet. Evol.28, 225–240 (2003). ArticleCASPubMed Google Scholar
Reyes, A. et al. Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Mol. Biol. Evol.21, 397–403 (2004). ArticleCASPubMed Google Scholar
Soltis, P. S., Soltis, D. E. & Chase, M. W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature402, 402–404 (1999). ArticleCASPubMed Google Scholar
Barkman, T. J. et al. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl Acad. Sci. USA97, 13166–13171 (2000). ArticleCASPubMedPubMed Central Google Scholar
Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature409, 618–622 (2001). ArticleCASPubMed Google Scholar
Soltis, D. E., Soltis, P. S. & Zanis, M. J. Phylogeny of seed plants based on evidence from eight genes. Am. J. Bot.89, 1670–1681 (2002). ArticleCASPubMed Google Scholar
Zanis, M. J., Soltis, D. E., Soltis, P. S., Mathews, S. & Donoghue, M. J. The root of the angiosperms revisited. Proc. Natl Acad. Sci. USA99, 6848–6853 (2002). ArticleCASPubMedPubMed Central Google Scholar
Savolainen, V. & Chase, M. W. A decade of progress in plant molecular phylogenetics. Trends Genet.19, 717–724 (2003). ArticleCASPubMed Google Scholar
King, N. & Carroll, S. B. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc. Natl Acad. Sci. USA98, 15032–15037 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lang, B. F., O'Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol.12, 1773–1778 (2002). ArticleCASPubMed Google Scholar
Simpson, A. G. & Roger, A. J. The real 'kingdoms' of eukaryotes. Curr. Biol.14, R693–R696 (2004). ArticleCASPubMed Google Scholar
Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature431, 152–155 (2004). ArticleCASPubMed Google Scholar
Esser, C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol.21, 1643–1660 (2004). ArticleCASPubMed Google Scholar
Doolittle, W. F. Phylogenetic classification and the universal tree. Science284, 2124–2129 (1999). ArticleCASPubMed Google Scholar
Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature405, 299–304 (2000). ArticleCASPubMed Google Scholar
Yang, S., Doolittle, R. F. & Bourne, P. E. Phylogeny determined by protein domain content. Proc. Natl Acad. Sci. USA102, 373–378 (2005). ArticleCASPubMedPubMed Central Google Scholar
Matte-Tailliez, O., Brochier, C., Forterre, P. & Philippe, H. Archaeal phylogeny based on ribosomal proteins. Mol. Biol. Evol.19, 631–639 (2002). ArticleCASPubMed Google Scholar
Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool.27, 401–410 (1978). Article Google Scholar
Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39, 783–791 (1985). ArticlePubMed Google Scholar
Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science294, 2310–2314 (2001). ArticleCASPubMed Google Scholar
Huelsenbeck, J. P. Performance of phylogenetic methods in simulation. Syst. Biol.44, 17–48 (1995). Article Google Scholar
Swofford, D. L. et al. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol.50, 525–539 (2001). ArticleCASPubMed Google Scholar
Kolaczkowski, B. & Thornton, J. W. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature431, 980–984 (2004). A simulation study showing that the performance of current likelihood-based methods of phylogenetic reconstruction are noticeably affected by heterotachy. ArticleCASPubMed Google Scholar
Whelan, S., Lio, P. & Goldman, N. Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet.17, 262–272 (2001). ArticleCASPubMed Google Scholar
Steel, M. A., Lockhart, P. J. & Penny, D. Confidence in evolutionary trees from biological sequence data. Nature364, 440–442 (1993). ArticleCASPubMed Google Scholar
Hendy, M. & Penny, D. A framework for the quantitative study of evolutionary trees. Syst. Zool.38, 297–309 (1989). Article Google Scholar
Lopez, P., Casane, D. & Philippe, H. Heterotachy, an important process of protein evolution. Mol. Biol. Evol.19, 1–7 (2002). ArticleCASPubMed Google Scholar
Mathews, S. & Donoghue, M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science286, 947–950 (1999). ArticleCASPubMed Google Scholar
Goremykin, V. V., Hirsch-Ernst, K. I., Wölfl, S. & Hellwig, F. H. Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol. Biol. Evol.20, 1499–1505 (2003). ArticleCASPubMed Google Scholar
Goremykin, V. V., Hirsch-Ernst, K. I., Wölfl, S. & Hellwig, F. H. The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol. Biol. Evol.21, 1445–1454 (2004). ArticleCASPubMed Google Scholar
Soltis, D. E. et al. Genome-scale data, angiosperm relationships, and 'ending incongruence': a cautionary tale in phylogenetics. Trends Plant Sci.9, 477–483 (2004). ArticleCASPubMed Google Scholar
Stefanovic, S., Rice, D. W. & Palmer, J. D. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evol. Biol.4, 35 (2004). ArticlePubMedPubMed Central Google Scholar
Halanych, K. M. The new view of animal phylogeny. Annu. Rev. Ecol. Evol. Syst.35, 229–256 (2004). Article Google Scholar
Aguinaldo, A. M. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature387, 489–493 (1997). ArticleCASPubMed Google Scholar
Dopazo, H., Santoyo, J. & Dopazo, J. Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics20 (Suppl. 1), I116–I121 (2004). ArticleCASPubMed Google Scholar
Keeling, P. J. & Fast, N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol.56, 93–116 (2002). ArticleCASPubMed Google Scholar
Sullivan, J. & Swofford, D. L. Should we use model-based methods for phylogenetic inference when we know that assumptions about among-site rate variation and nucleotide substitution pattern are violated? Syst. Biol.50, 723–729 (2001). ArticleCASPubMed Google Scholar
Huelsenbeck, J. P. The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Mol. Biol. Evol.12, 843–849 (1995). CASPubMed Google Scholar
Gaut, B. S. & Lewis, P. O. Success of maximum likelihood phylogeny inference in the four-taxon case. Mol. Biol. Evol.12, 152–162 (1995). ArticleCASPubMed Google Scholar
Siepel, A. & Haussler, D. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol. Biol. Evol.21, 413–428 (2004). Google Scholar
Robinson, D. M., Jones, D. T., Kishino, H., Goldman, N. & Thorne, J. L. Protein evolution with dependence among codons due to tertiary structure. Mol. Biol. Evol.28, 1692–1704 (2003). ArticleCAS Google Scholar
Rodrigue, N., Lartillot, N., Bryant, D. & Philippe, H. Site interdependence attributed to tertiary structure in amino acid sequence evolution. Gene347, 207–217 (2005). ArticleCASPubMed Google Scholar
Galtier, N. & Gouy, M. Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol. Biol. Evol.15, 871–879 (1998). ArticleCASPubMed Google Scholar
Tuffley, C. & Steel, M. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci.147, 63–91 (1998). ArticleCASPubMed Google Scholar
Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol.53, 711–723 (2001). ArticleCASPubMed Google Scholar
Galtier, N. Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol. Biol. Evol.18, 866–873 (2001). ArticleCASPubMed Google Scholar
Huelsenbeck, J. P. Testing a covariotide model of DNA substitution. Mol. Biol. Evol.19, 698–707 (2002). ArticleCASPubMed Google Scholar
Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol.21, 1095–1109 (2004). ArticleCASPubMed Google Scholar
Pagel, M. & Meade, A. A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Syst. Biol.53, 571–581 (2004). References 138 and 139 explore promising mixture models to handle sequences that evolved under heterogeneous conditions. ArticlePubMed Google Scholar
Woese, C. R., Achenbach, L., Rouviere, P. & Mandelco, L. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol.14, 364–371 (1991). ArticleCASPubMed Google Scholar
Delsuc, F., Phillips, M. J. & Penny, D. Comment on 'Hexapod origins: Monophyletic or paraphyletic?' Science301, 1482 (2003). ArticleCASPubMed Google Scholar
Phillips, M. J. & Penny, D. The root of the mammalian tree inferred from whole mitochondrial genomes. Mol. Phylogenet. Evol.28, 171–185 (2003). ArticleCASPubMed Google Scholar
Gibson, A., Gowri-Shankar, V., Higgs, P. G. & Rattray, M. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol. Biol. Evol.22, 251–264 (2005). ArticleCASPubMed Google Scholar
Phillips, M. J., Delsuc, F. & Penny, D. Genome-scale phylogeny and the detection of systematic biases. Mol. Biol. Evol.21, 1455–1458 (2004). A cautionary tale for phylogenomic studies from the empirical demonstration that compositional bias can lead to inconsistency of some distance methods. ArticleCASPubMed Google Scholar
Lopez, P., Forterre, P. & Philippe, H. The root of the tree of life in the light of the covarion model. J. Mol. Evol.49, 496–508 (1999). ArticleCASPubMed Google Scholar
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A. & Baguna, J. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science283, 1919–1923 (1999). ArticleCASPubMed Google Scholar
Brinkmann, H. & Philippe, H. Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol.16, 817–825 (1999). ArticleCASPubMed Google Scholar
Burleigh, J. G. & Mathews, S. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. Am. J. Bot.91, 1599–1613 (2004). ArticleCASPubMed Google Scholar
Pisani, D. Identifying and removing fast-evolving sites using compatibility analysis: an example from the Arthropoda. Syst. Biol.53, 978–989 (2004). ArticlePubMed Google Scholar
Miyamoto, M. M. & Fitch, W. M. Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol.44, 64–76 (1995). Article Google Scholar
Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet.38, 525–552 (2004). ArticleCASPubMed Google Scholar
Philippe, H., Chenuil, A. & Adoutte, A. Can the Cambrian explosion be inferred through molecular phylogeny? Development120, S15–S25 (1994). Google Scholar
Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teacher35, 125–129 (1973). Article Google Scholar
Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425 (1987). CASPubMed Google Scholar
Rzhetsky, A. & Nei, M. Statistical properties of the ordinary least-squares, generalized least- squares, and minimum-evolution methods of phylogenetic inference. J. Mol. Evol.35, 367–375 (1992). ArticleCASPubMed Google Scholar
Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol.17, 368–376 (1981). ArticleCASPubMed Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). ArticleCASPubMed Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994). ArticleCASPubMedPubMed Central Google Scholar
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol.17, 540–552 (2000). ArticleCASPubMed Google Scholar
Yang, Z. Maximum-likelihood models for combined analyses of multiple sequence data. J. Mol. Evol.42, 587–596 (1996). ArticleCASPubMed Google Scholar
Pupko, T., Huchon, D., Cao, Y., Okada, N. & Hasegawa, M. Combining multiple data sets in a likelihood analysis: which models are the best? Mol. Biol. Evol.19, 2294–2307 (2002). ArticleCASPubMed Google Scholar
Springer, M. S., Amrine, H. M., Burk, A. & Stanhope, M. J. Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Syst. Biol.48, 65–75 (1999). ArticleCASPubMed Google Scholar
Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony and other methods (Sinauer Associates, Sunderland, Masachusetts, 2002). Google Scholar
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol.52, 696–704 (2003). ArticlePubMed Google Scholar
Philippe, H. & Lopez, P. On the conservation of protein sequences in evolution. Trends Biochem. Sci.26, 414–416 (2001). ArticleCASPubMed Google Scholar
Lockhart, P. J., Larkum, A. W., Steel, M., Waddell, P. J. & Penny, D. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc. Natl Acad. Sci. USA93, 1930–1934 (1996). ArticleCASPubMedPubMed Central Google Scholar
Philippe, H. & Germot, A. Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol. Biol. Evol.17, 830–834 (2000). ArticleCASPubMed Google Scholar
Inagaki, Y., Susko, E., Fast, N. M. & Roger, A. J. Covarion shifts cause a long-branch attraction artifact that unites Microsporidia and Archaebacteria in EF-1α phylogenies. Mol. Biol. Evol.21, 1340–1349 (2004). ArticleCASPubMed Google Scholar
Kishino, H., Miyata, T. & Hasegawa, M. Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J. Mol. Evol.31, 151–160 (1990). ArticleCAS Google Scholar
Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. & Douzery, E. J. P. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol.20, 248–254 (2003). ArticleCASPubMed Google Scholar
Taylor, D. J. & Piel, W. H. An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. Mol. Biol. Evol.21, 1534–1537 (2004). ArticleCASPubMed Google Scholar
Huelsenbeck, J. P. & Rannala, B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol.53, 904–913 (2004). ArticlePubMed Google Scholar
Lemmon, A. R. & Moriarty, E. C. The importance of proper model assumption in Bayesian phylogenetics. Syst. Biol.53, 265–277 (2004). ArticlePubMed Google Scholar
Strimmer, K. & von Haeseler, A. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol.13, 964–969 (1996). ArticleCAS Google Scholar
Roshan, U., Moret, B. M. E., Williams, T. L. & Warnow, T. in Proc. 3rd Int. IEEE Computational Systems Bioinformatics Conference (CSB, Stanford, California, 2004). Google Scholar
Roshan, U., Moret, B. M. E., Williams, T. L. & Warnow, T. in Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. (ed. Bininda-Emonds, O. R. P.) 301–328 (Springer, Berlin, 2004). Book Google Scholar
Cavender, J. A. & Felsenstein, J. Invariants of phylogenies in a simple case with discrete states. J. Classif.4, 57–71 (1987). Article Google Scholar
Lecointre, G., Philippe, H., Le, H. L. V. & Le Guyader, H. How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Mol. Phylogenet. Evol.3, 292–309 (1994). ArticleCASPubMed Google Scholar