Regulation of DNA repair by ubiquitylation (original) (raw)
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem.73, 39–85 (2004). CASPubMed Google Scholar
Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature411, 366–374 (2001). An excellent overview of mammalian DNA-repair pathways. CASPubMed Google Scholar
Kennedy, R. D. & D'Andrea, A. D. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev.19, 2925–2940 (2005). CASPubMed Google Scholar
Rothfuss, A. & Grompe, M. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol. Cell. Biol.24, 123–134 (2004). CASPubMedPubMed Central Google Scholar
Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell15, 607–620 (2004). CASPubMed Google Scholar
D'Andrea, A. D. The Fanconi road to cancer. Genes Dev.17, 1933–1936 (2003). CASPubMed Google Scholar
D'Andrea, A. D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer3, 23–34 (2003). CAS Google Scholar
Niedernhofer, L. J., Lalai, A. S. & Hoeijmakers, J. H. Fanconi anemia (cross)linked to DNA repair. Cell123, 1191–1198 (2005). CASPubMed Google Scholar
Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell7, 249–262 (2001). Provides the first evidence that FA proteins are involved in a common pathway to monoubiquitylate FANCD2. CASPubMed Google Scholar
Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science297, 606–609 (2002). CASPubMed Google Scholar
Wang, X., Andreassen, P. R. & D'Andrea, A. D. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol. Cell. Biol.24, 5850–5862 (2004). CASPubMedPubMed Central Google Scholar
Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet.35, 165–170 (2003). Reports the identification of a ubiquitin-ligase catalytic subunit in the FA core complex. CASPubMed Google Scholar
Matsushita, N. et al. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell9, 841–847 (2005). Google Scholar
Meetei, A. R. et al. A human ortholog of archael DNA repair protein HEF is defective in Fanconi anemia complementation group M. Nature Genet.37, 958–963 (2005). CASPubMed Google Scholar
Mosedale, G. et al. The vertebrate Hef orthologue is a component of the Fanconi anemia tumour suppressor pathway. Nature Struct. Mol. Biol.12, 963–971 (2005). Google Scholar
Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev.18, 1958–1963 (2004). CASPubMedPubMed Central Google Scholar
Hussain, S. et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum. Mol. Genet.13, 1241–1248 (2004). CASPubMed Google Scholar
Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A. R. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev.17, 3017–3022 (2003). CASPubMedPubMed Central Google Scholar
Montes de Oca, R. et al. Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood105, 1003–1009 (2005). PubMed Google Scholar
Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood100, 2414–2420 (2002). CASPubMed Google Scholar
Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi Anemia pathway. Mol. Cell17, 331–339 (2005). Reports the results of a DUB-gene family RNAi library screen to identify negative regulators of the FA pathway. CASPubMed Google Scholar
Vandenberg, C. J. et al. BRCA1-independent ubiquitination of FANCD2. Mol. Cell12, 247–254 (2003). CASPubMed Google Scholar
Mallery, D. L., Vandenberg, C. J. & Hiom, K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J.21, 6755–6762 (2002). CASPubMedPubMed Central Google Scholar
Chiba, N. & Parvin, J. D. The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme. Cancer Res.62, 4222–4228 (2002). CASPubMed Google Scholar
Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem.273, 5184–5189 (1998). CASPubMed Google Scholar
Hashizume, R. et al. The ring heterodimer brca1–bard1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem.276, 14537–14540 (2001). CASPubMed Google Scholar
Dong, Y. et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell12, 1087–1099 (2003). CASPubMed Google Scholar
Jensen, D. E. et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene16, 1097–1112 (1998). CASPubMed Google Scholar
Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science298, 608–611 (2002). Discovery of a novel metalloprotease domain in CSN complex that is responsible for deubiquitylation and/or deneddylation activities. CASPubMed Google Scholar
Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). Shows that PCNA in yeast can be modified by SUMO, monoubiquitin or polyubiquitin to promote RAD6-dependent error-prone or error-free post-replication repair. CASPubMed Google Scholar
Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J.19, 3388–3397 (2000). CASPubMedPubMed Central Google Scholar
Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature425, 188–191 (2003). CASPubMed Google Scholar
Haracska, L., Torres-Ramos, C. A., Johnson, R. E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol.24, 4267–4274 (2004). CASPubMedPubMed Central Google Scholar
Spence, J., Sadis, S., Haas, A. L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol.15, 1265–1273 (1995). CASPubMedPubMed Central Google Scholar
Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell96, 645–653 (1999). CASPubMed Google Scholar
Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature436, 428–433 (2005). CASPubMed Google Scholar
Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell19, 123–133 (2005). CASPubMed Google Scholar
Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase ε with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell14, 491–500 (2004). First to show that mammalian PCNA is monoubiquitylated in order to functionally interact with a Y-family TLS polymerase. CASPubMed Google Scholar
Watanabe, K. et al. Rad18 guides polε to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J.23, 3886–3896 (2004). CASPubMedPubMed Central Google Scholar
Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase ε. Nature399, 700–704 (1999). CASPubMed Google Scholar
Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase ε, defective in xeroderma pigmentosum variant cells. Genes Dev.15, 158–172 (2001). CASPubMedPubMed Central Google Scholar
Friedberg, E. C., Wagner, R. & Radman, M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science296, 1627–1630 (2002). CASPubMed Google Scholar
Murakumo, Y. et al. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem.276, 35644–35651 (2001). CASPubMed Google Scholar
Ohashi, E. et al. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells9, 523–531 (2004). CASPubMed Google Scholar
Guo, C. et al. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J.22, 6621–6630 (2003). CASPubMedPubMed Central Google Scholar
Tissier, A. et al. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol ε and REVl protein. DNA Repair (Amst.)3, 1503–1514 (2004). CAS Google Scholar
Garg, P. & Burgers, P. M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases ε and REV1. Proc. Natl Acad. Sci. USA102, 18361–18366 (2005). CASPubMedPubMed Central Google Scholar
Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science310, 1821–1824 (2005). Describes two novel ubiquitin binding domains, UBM and UBZ, that allow Y-family TLS polymerases to interact with monoubiquitylated PCNA. CASPubMed Google Scholar
Kannouche, P. L. & Lehmann, A. R. Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle3, 1011–1013 (2004). CASPubMed Google Scholar
Miyase, S. et al. Differential regulation of Rad18 through Rad6-dependent mono- and polyubiquitination. J. Biol. Chem.280, 515–524 (2005). CASPubMed Google Scholar
McCulloch, S. D. et al. Preferential cis–syn thymine dimer bypass by DNA polymerase ε occurs with biased fidelity. Nature428, 97–100 (2004). CASPubMed Google Scholar
Li, Z., Xiao, W., McCormick, J. J. & Maher, V. M. Identification of a protein essential for a major pathway used by human cells to avoid UV- induced DNA damage. Proc. Natl Acad. Sci. USA99, 4459–4464 (2002). CASPubMedPubMed Central Google Scholar
Leach, C. A. & Michael, W. M. Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J. Cell Biol.171, 947–954 (2005). CASPubMedPubMed Central Google Scholar
Wood, R. D. et al. DNA damage recognition and nucleotide excision repair in mammalian cells. Cold Spring Harb. Symp. Quant. Biol.65, 173–182 (2000). CASPubMed Google Scholar
Friedberg, E. C. How nucleotide excision repair protects against cancer. Nature Rev. Cancer1, 22–33 (2001). CAS Google Scholar
Svejstrup, J. Q. Mechanisms of transcription-coupled DNA repair. Nature Rev. Mol. Cell Biol.3, 21–29 (2002). CAS Google Scholar
Fitch, M. E., Nakajima, S., Yasui, A. & Ford, J. M. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J. Biol. Chem.278, 46906–46910 (2003). CASPubMed Google Scholar
Moser, J. et al. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair (Amst.)4, 571–582 (2005). CAS Google Scholar
Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Rev. Cancer5, 564–573 (2005). CAS Google Scholar
Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell113, 357–367 (2003). Provides evidence for ubiquitin ligase activity that is linked to two NER protein complexes and that is negatively regulated by the CSN. CASPubMed Google Scholar
Cope, G. A. & Deshaies, R. J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell114, 663–671 (2003). CASPubMed Google Scholar
Sugasawa, K. et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell121, 387–400 (2005). Shows that XPC is polyubiquitylated in response to UV damage. CASPubMed Google Scholar
Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J.13, 1831–1843 (1994). CASPubMedPubMed Central Google Scholar
Shivji, M. K., Eker, A. P. & Wood, R. D. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. J. Biol. Chem.269, 22749–22757 (1994). CASPubMed Google Scholar
Sugasawa, K., Shimizu, Y., Iwai, S. & Hanaoka, F. A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair (Amst.)1, 95–107 (2002). CAS Google Scholar
Wakasugi, M. et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem.277, 1637–1640 (2002). CASPubMed Google Scholar
Ng, J. M. et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev.17, 1630–1645 (2003). CASPubMedPubMed Central Google Scholar
Okuda, Y. et al. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair (Amst.)3, 1285–1295 (2004). CAS Google Scholar
Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell3, 687–695 (1999). CASPubMed Google Scholar
Ortolan, T. G., Chen, L., Tongaonkar, P. & Madura, K. Rad23 stabilizes Rad4 from degradation by the Ub–proteasome pathway. Nucleic Acids Res.32, 6490–6500 (2004). CASPubMedPubMed Central Google Scholar
Heessen, S., Masucci, M. G. & Dantuma, N. P. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell18, 225–235 (2005). CASPubMed Google Scholar
Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA93, 11586–11590 (1996). CASPubMedPubMed Central Google Scholar
Kleiman, F. E. et al. BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev.19, 1227–1237 (2005). CASPubMedPubMed Central Google Scholar
Woudstra, E. C. et al. A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature415, 929–933 (2002). CASPubMed Google Scholar
Svejstrup, J. Q. Rescue of arrested RNA polymerase II complexes. J. Cell Sci.116, 447–451 (2003). CASPubMed Google Scholar
Hardeland, U. et al. Thymine DNA glycosylase. Prog. Nucleic Acid Res. Mol. Biol.68, 235–253 (2001). CASPubMed Google Scholar
Scharer, O. D. & Jiricny, J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays23, 270–281 (2001). CASPubMed Google Scholar
Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J.21, 1456–1464 (2002). Provides evidence that TDG is modified by SUMO, which is important in facilitating BER. CASPubMedPubMed Central Google Scholar
Steinacher, R. & Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol.15, 616–623 (2005). CASPubMed Google Scholar
Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell115, 565–576 (2003). CASPubMed Google Scholar
Gocke, C. B., Yu, H. & Kang, J. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem.280, 5004–5012 (2005). CASPubMed Google Scholar
Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem.70, 503–533 (2001). CASPubMed Google Scholar
Pickart, C. M. Ubiquitin in chains. Trends Biochem. Sci.25, 544–548 (2000). CASPubMed Google Scholar
Johnson, E. S. Ubiquitin branches out. Nature Cell Biol.4, E295–E298 (2002). CASPubMed Google Scholar
Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol.6, 610–621 (2005). CAS Google Scholar
Sun, L. & Chen, Z. J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol.16, 119–126 (2004). CASPubMed Google Scholar
Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol.7, 758–765 (2005). CASPubMed Google Scholar
Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta1695, 189–207 (2004). CASPubMed Google Scholar
Wilkinson, K. D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J.11, 1245–1256 (1997). CASPubMed Google Scholar
Di Fiore, P. P., Polo, S. & Hofmann, K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nature Rev. Mol. Cell Biol.4, 491–497 (2003). CAS Google Scholar
Welchman, R. L., Gordon, C. & Mayer, R. J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Rev. Mol. Cell Biol.6, 599–609 (2005). CAS Google Scholar
Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev.18, 2046–2059 (2004). CASPubMed Google Scholar
Desterro, J. M., Rodriguez, M. S., Kemp, G. D. & Hay, R. T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem.274, 10618–10624 (1999). CASPubMed Google Scholar
Hay, R. T. Protein modification by SUMO. Trends Biochem. Sci.26, 332–333 (2001). CASPubMed Google Scholar
Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem.73, 355–382 (2004). CASPubMed Google Scholar
Hori, T. et al. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene18, 6829–6834 (1999). CASPubMed Google Scholar
Liu, J., Furukawa, M., Matsumoto, T. & Xiong, Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1–SKP1 binding and SCF ligases. Mol. Cell10, 1511–1518 (2002). CASPubMed Google Scholar
Hanna, J., Leggett, D. S. & Finley, D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol.23, 9251–9261 (2003). CASPubMedPubMed Central Google Scholar
Park, W. H. et al. Direct DNA binding activity of the fanconi anemia d2 protein. J. Biol. Chem.280, 23593–23598 (2005). CASPubMed Google Scholar
Guterman, A. & Glickman, M. H. Deubiquitinating enzymes are IN(trinsic to proteasome function). Curr. Protein Pept. Sci.5, 201–211 (2004). CASPubMed Google Scholar
Mimnaugh, E. G., Chen, H. Y., Davie, J. R., Celis, J. E. & Neckers, L. Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response. Biochemistry36, 14418–14429 (1997). CASPubMed Google Scholar
Voorhees, P. M. & Orlowski, R. Z. The proteasome and proteasome inhibitors in cancer therapy. Annu. Rev. Pharmacol. Toxicol.46, 189–213 (2006). CASPubMed Google Scholar
Mimnaugh, E. G. et al. Prevention of cisplatin-DNA adduct repair and potentiation of cisplatin-induced apoptosis in ovarian carcinoma cells by proteasome inhibitors. Biochem. Pharmacol.60, 1343–1354 (2000). CASPubMed Google Scholar
Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol.8, 339–347 (2006). CASPubMed Google Scholar