Chromatin in pluripotent embryonic stem cells and differentiation (original) (raw)
O'Shea, K. S. Self-renewal vs. differentiation of mouse embryonic stem cells. Biol. Reprod.71, 1755–1765 (2004). ArticleCAS Google Scholar
Chambers, I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells6, 386–391 (2004). ArticleCAS Google Scholar
Francastel, C., Schubeler, D., Martin, D. I. & Groudine, M. Nuclear compartmentalization and gene activity. Nature Rev. Mol. Cell Biol.1, 137–143 (2000). ArticleCAS Google Scholar
Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science280, 547–553 (1998). ArticleCAS Google Scholar
Parada, L. & Misteli, T. Chromosome positioning in the interphase nucleus. Trends Cell Biol.12, 425–432 (2002). ArticleCAS Google Scholar
Cremer, T. et al. Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum. Genet.62, 201–209 (1982). ArticleCAS Google Scholar
Parada, L. A., McQueen, P. G. & Misteli, T. Tissue-specific spatial organization of genomes. Genome Biol.5, R44 (2004). Article Google Scholar
Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol.3, e157 (2005). Article Google Scholar
Misteli, T. Spatial positioning: a new dimension in genome function. Cell119, 153–156 (2004). ArticleCAS Google Scholar
Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. & Csoka, A. B. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells24, 177–185 (2005). Article Google Scholar
Park, S. H., Kook, M. C., Kim, E. Y., Park, S. & Lim, J. H. Ultrastructure of human embryonic stem cells and spontaneous and retinoic acid-induced differentiating cells. Ultrastruct. Pathol.28, 229–238 (2004). Article Google Scholar
Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell10, 105–116 (2006). ArticleCAS Google Scholar
Wiblin, A. E., Cui, W., Clark, A. J. & Bickmore, W. A. Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. J. Cell Sci.118, 3861–3868 (2005). ArticleCAS Google Scholar
Marshall, W. F. Gene expression and nuclear architecture during development and differentiation. Mech. Dev.120, 1217–1230 (2003). ArticleCAS Google Scholar
Taddei, A., Hediger, F., Neumann, F. R. & Gasser, S. M. The function of nuclear architecture: a genetic approach. Annu. Rev. Genet.38, 305–345 (2004). ArticleCAS Google Scholar
Kim, S. H. et al. Spatial genome organization during T-cell differentiation. Cytogenet. Genome Res.105, 292–301 (2004). ArticleCAS Google Scholar
Sperger, J. M. et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl Acad. Sci. USA100, 13350–13355 (2003). ArticleCAS Google Scholar
Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev.18, 1119–1130 (2004). ArticleCAS Google Scholar
Chakalova, L., Debrand, E., Mitchell, J. A., Osborne, C. S. & Fraser, P. Replication and transcription: shaping the landscape of the genome. Nature Rev. Genet.6, 669–677 (2005). ArticleCAS Google Scholar
Panning, M. M. & Gilbert, D. M. Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J. Cell Biochem.95, 74–82 (2005). ArticleCAS Google Scholar
Perry, P. et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle3, 1645–1650 (2004). ArticleCAS Google Scholar
Williams, R. R. et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J. Cell Sci.119, 132–140 (2006). ArticleCAS Google Scholar
Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol.8, 532–538 (2006). ArticleCAS Google Scholar
Loden, M. & van Steensel, B. Whole-genome views of chromatin structure. Chromosome Res.13, 289–298 (2005). ArticleCAS Google Scholar
Arney, K. L. & Fisher, A. G. Epigenetic aspects of differentiation. J. Cell Sci.117, 4355–4363 (2004). ArticleCAS Google Scholar
Cammas, F. et al. Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci.115, 3439–3448 (2002). CASPubMed Google Scholar
Kurisaki, A. et al. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor. Biochem. Biophys. Res. Commun.335, 667–675 (2005). ArticleCAS Google Scholar
Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell6, 1287–1295 (2000). ArticleCAS Google Scholar
Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep.1, 500–506 (2000). ArticleCAS Google Scholar
Cao, S. et al. The high-mobility-group box protein SSRP1/T160 is essential for cell viability in day 3.5 mouse embryos. Mol. Cell Biol.23, 5301–5307 (2003). ArticleCAS Google Scholar
Stopka, T. & Skoultchi, A. I. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl Acad. Sci. USA100, 14097–14102 (2003). ArticleCAS Google Scholar
Xi, R. & Xie, T. Stem cell self-renewal controlled by chromatin remodeling factors. Science310, 1487–1489 (2005). ArticleCAS Google Scholar
Kaji, K. et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature Cell Biol.8, 285–292 (2006). ArticleCAS Google Scholar
Kimura, H. & Cook, P. R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol.153, 1341–1353 (2001). ArticleCAS Google Scholar
Phair, R. D. et al. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell Biol.24, 6393–6402 (2004). ArticleCAS Google Scholar
Fischle, W., Wang, Y. & Allis, C. D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol.15, 172–183 (2003). ArticleCAS Google Scholar
Hsieh, C. L. Dynamics of DNA methylation pattern. Curr. Opin. Genet. Dev.10, 224–228 (2000). ArticleCAS Google Scholar
Lee, J. H., Hart, S. R. & Skalnik, D. G. Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis38, 32–38 (2004). ArticleCAS Google Scholar
Keohane, A. M., O'Neill L, P., Belyaev, N. D., Lavender, J. S. & Turner, B. M. X-inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol.180, 618–630 (1996). ArticleCAS Google Scholar
Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J.24, 800–812 (2005). ArticleCAS Google Scholar
Kimura, H., Tada, M., Nakatsuji, N. & Tada, T. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol. Cell Biol.24, 5710–5720 (2004). ArticleCAS Google Scholar
Szutorisz, H. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell Biol.25, 1804–1820 (2005). ArticleCAS Google Scholar
Szutorisz, H. & Dillon, N. The epigenetic basis for embryonic stem cell pluripotency. Bioessays27, 1286–1293 (2005). ArticleCAS Google Scholar
Lande-Diner, L. & Cedar, H. Silence of the genes — mechanisms of long-term repression. Nature Rev. Genet.6, 648–654 (2005). ArticleCAS Google Scholar
Lorincz, M. C., Dickerson, D. R., Schmitt, M. & Groudine, M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Struct. Mol. Biol.11, 1068–1075 (2004). ArticleCAS Google Scholar
Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. & Cedar, H. The role of DNA methylation in setting up chromatin structure during development. Nature Genet.34, 187–192 (2003). ArticleCAS Google Scholar
Li, C. L. & Johnson, G. R. Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells. Blood84, 408–414 (1994). CASPubMed Google Scholar
Shiota, K. et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells7, 961–969 (2002). ArticleCAS Google Scholar
Tsuji-Takayama, K. et al. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Biochem. Biophys. Res. Commun.323, 86–90 (2004). ArticleCAS Google Scholar
Taylor, S. M. & Jones, P. A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell17, 771–779 (1979). ArticleCAS Google Scholar
Hattori, N. et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem.279, 17063–17069 (2004). ArticleCAS Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental regulators by polycomb in human embryonic stem cells. Cell125, 315–326 (2006). ArticleCAS Google Scholar
Munoz-Sanjuan, I. & Brivanlou, A. H. Neural induction, the default model and embryonic stem cells. Nature Rev. Neurosci.3, 271–280 (2002). ArticleCAS Google Scholar
Abeyta, M. J. et al. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet.13, 601–608 (2004). ArticleCAS Google Scholar
Eckfeldt, C. E., Mendenhall, E. M. & Verfaillie, C. M. The molecular repertoire of the 'almighty' stem cell. Nature Rev. Mol. Cell Biol.6, 726–737 (2005). ArticleCAS Google Scholar
Golan-Mashiach, M. et al. Design principle of gene expression used by human stem cells: implication for pluripotency. FASEB J.19, 147–149 (2005). ArticleCAS Google Scholar
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005). ArticleCAS Google Scholar
Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol.13, 1192–1200 (2003). ArticleCAS Google Scholar
Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell7, 597–606 (2004). ArticleCAS Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ArticleCAS Google Scholar
Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19, 489–501 (2005). ArticleCAS Google Scholar
Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol.10, 475–478 (2000). ArticleCAS Google Scholar
Rougier, N. et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev.12, 2108–2113 (1998). ArticleCAS Google Scholar
Maitra, A. et al. Genomic alterations in cultured human embryonic stem cells. Nature Genet.37, 1099–1103 (2005). ArticleCAS Google Scholar
Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20, 1123–1136 (2006). ArticleCAS Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 19 Apr 2006 (doi:10.1038/nature04733).
Lee, T. I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell125, 301–313 (2006). ArticleCAS Google Scholar