Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ.12 (Suppl. 2), 1463–1467 (2005). ArticleCASPubMed Google Scholar
Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O. & Klionsky, D. J. Potential therapeutic applications of autophagy. Nature Rev. Drug Discov.6, 304–312 (2007). A landmark review that enumerates the potential therapeutic possibilities of autophagy inhibition and stimulation. ArticleCAS Google Scholar
Lum, J. J., DeBerardinis, R. J. & Thompson, C. B. Autophagy in metazoans: cell survival in the land of plenty. Nature Rev. Mol. Cell Biol.6, 439–448 (2005). ArticleCAS Google Scholar
Baehrecke, E. H. Autophagy: dual roles in life and death? Nature Rev. Mol. Cell Biol.6, 505–510 (2005). ArticleCAS Google Scholar
Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nature Rev. Cancer5, 886–897 (2005). ArticleCAS Google Scholar
Kondo, Y., Kanzawa, T., Sawaya, R. & Kondo, S. The role of autophagy in cancer development and response to therapy. Nature Rev. Cancer5, 726–734 (2005). ArticleCAS Google Scholar
Gozuacik, D. & Kimchi, A. Autophagy and cell death. Curr. Top. Dev. Biol.78, 217–245 (2007). ArticleCASPubMed Google Scholar
Lockshin, R. A. & Zakeri, Z. Programmed cell death and apoptosis: origins of the theory. Nature Rev. Mol. Cell Biol.2, 545–550 (2001). A fascinating historical overview on the theory of developmental and homeostatic cell death. ArticleCAS Google Scholar
Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol.6, 1221–1228 (2004). ArticleCASPubMed Google Scholar
Madden, D. T., Egger, L. & Bredesen, D. E. A calpain-like protease inhibits autophagic cell death. Autophagy3, 519–522 (2007). ArticleCASPubMed Google Scholar
Xu, Y., Kim, S. O., Li, Y. & Han, J. Autophagy contributes to caspase-independent macrophage cell death. J. Biol. Chem.281, 19179–19187 (2006). ArticleCASPubMed Google Scholar
Yu, L. et al. Regulation of an ATG7–beclin 1 program of autophagic cell death by caspase-8. Science304, 1500–1502 (2004). ArticleCASPubMed Google Scholar
Yu, L. et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. USA103, 4952–4957 (2006). Provides the first example of how selective degradation of a vital cellular protein by autophagy can precipitate cell death. ArticleCASPubMedPubMed Central Google Scholar
Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell120, 237–248 (2005). Reports the discovery of a close link between autophagy, cellular atrophy and the absence of growth-factor signalling in which autophagy allows cells to adapt to a failing supply of metabolites. ArticleCASPubMed Google Scholar
Gonzalez-Polo, R. A. et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J. Cell Sci.118, 3091–3102 (2005). ArticleCASPubMed Google Scholar
Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol.25, 1025–1040 (2005). The first report showing that autophagy avoids apoptosis in the context of growth-factor and nutrient depletion. ArticleCASPubMedPubMed Central Google Scholar
Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441, 885–889 (2006). ArticleCASPubMed Google Scholar
Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441, 880–884 (2006). ArticleCASPubMed Google Scholar
Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y. W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med.204, 25–31 (2007). ArticleCASPubMedPubMed Central Google Scholar
Takacs-Vellai, K. et al. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr. Biol.15, 1513–1517 (2005). ArticleCASPubMed Google Scholar
Nutt, L. K. et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell123, 89–103 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev.87, 99–163 (2007). ArticleCASPubMed Google Scholar
Golstein, P. & Kroemer, G. Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci.32, 37–43 (2007). ArticleCASPubMed Google Scholar
Katayama, M., Kawaguchi, T., Berger, M. S. & Pieper, R. O. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ.14, 548–558 (2007). ArticleCASPubMed Google Scholar
Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell10, 51–64 (2006). A fascinating study of the potential role of autophagy in the growth of cancer cellsin vivo. ArticleCASPubMedPubMed Central Google Scholar
Williams, A. et al. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr. Top. Dev. Biol.76, 89–101 (2006). ArticleCASPubMed Google Scholar
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet.36, 585–595 (2004). The first report to show that pharmacological stimulation of autophagy may reduce the histopathological and clinical signs of neurodegenerationin vivo. ArticleCASPubMed Google Scholar
Shibata, M. et al. Regulation of intracellular accumulation of mutant huntingtin by beclin 1. J. Biol. Chem.281, 14474–14485 (2006). ArticleCASPubMed Google Scholar
Cuervo, A. M. Autophagy in neurons: it is not all about food. Trends Mol. Med.12, 461–464 (2006). ArticleCASPubMed Google Scholar
Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C. J. & Rubinsztein, D. C. Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet.15, 1209–1216 (2006). ArticleCASPubMed Google Scholar
Colell, A. et al. GAPDH and autophagy preserve cellular survival during caspase-independent cell death. Cell129, 983–997 (2007). A highly intriguing report suggesting that GAPDH can stimulate autophagy by its action as a nuclear transcription factor, and thereby facilitates the survival of cells that have undergone MOMP. ArticleCASPubMed Google Scholar
Liang, J. et al. The energy sensing LKB1–AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biol.9, 218–224 (2007). ArticleCASPubMed Google Scholar
Clarke, P. G. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. (Berl.)181, 195–213 (1990). ArticleCAS Google Scholar
Martin, D. N. & Baehrecke, E. H. Caspases function in autophagic programmed cell death in Drosophila. Development131, 275–284 (2004). ArticleCASPubMed Google Scholar
Scott, R. C., Juhasz, G. & Neufeld, T. P. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr. Biol.17, 1–11 (2007). Reports anin vivoexperiment that shows how autophagy can indirectly trigger cell death through the induction of apoptosis. ArticleCASPubMedPubMed Central Google Scholar
Espert, L. et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest.116, 2161–2172 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA100, 15077–15082 (2003). ArticleCASPubMedPubMed Central Google Scholar
Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest.112, 1809–1820 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev.21, 1367–1381 (2007). This excellent paper suggests a mechanistic explanation for the tumour-suppressive function of beclin-1, which is required for genomic stability. ArticleCASPubMedPubMed Central Google Scholar
Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.26, 1749–1760 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lavieu, G. et al. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J. Biol. Chem.281, 8518–8527 (2006). ArticleCASPubMed Google Scholar
Hait, N. C., Oskeritzian, C. A., Paugh, S. W., Milstien, S. & Spiegel, S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta1758, 2016–2026 (2006). ArticleCASPubMed Google Scholar
Rizzuto, R. & Pozzan, T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev.86, 369–408 (2006). ArticleCASPubMed Google Scholar
Hoyer-Hansen, M. et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell25, 193–205 (2007). ArticlePubMedCAS Google Scholar
Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biol.8, 1124–1132 (2006). An intriguing report that documents how ATG5 protein can switch from its normal function in autophagy to a pro-apoptotic one. ArticleCASPubMed Google Scholar
Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol.8, 275–283 (2007). ArticleCAS Google Scholar
Zeng, X., Yan, T., Schupp, J. E., Seo, Y. & Kinsella, T. J. DNA mismatch repair initiates 6-thioguanine-induced autophagy through p53 activation in human tumor cells. Clin. Cancer Res.13, 1315–1321 (2007). ArticleCASPubMed Google Scholar
Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA102, 8204–8209 (2005). ArticleCASPubMedPubMed Central Google Scholar
Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell126, 121–134 (2006). ArticleCASPubMed Google Scholar
Galonek, H. L. & Hardwick, J. M. Upgrading the BCL-2 network. Nature Cell Biol.8, 1317–1319 (2006). ArticleCASPubMed Google Scholar
Maiuri, M. C. et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J.26, 2527–2539 (2007). This paper explains the triangular relationship between the essential autophagy protein beclin-1, the anti-apoptotic multidomain proteins of the BCL2 family and BH3-only proteins. ArticleCASPubMedPubMed Central Google Scholar
Kessel, D. & Reiners, J. J. Jr. Initiation of apoptosis and autophagy by the Bcl-2 antagonist HA14–1. Cancer Lett.249, 294–299 (2007). ArticleCASPubMed Google Scholar
Daido, S. et al. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res.64, 4286–4293 (2004). ArticleCASPubMed Google Scholar
Hamacher-Brady, A. et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ.14, 146–157 (2007). ArticleCASPubMed Google Scholar
Oberstein, A., Jeffrey, P. & Shi, Y. Crystal structure of the BCL-XL-beclin 1 peptide complex: beclin 1 is a novel BH3-only protein. J. Biol. Chem.282, 13123–13132 (2007). ArticleCASPubMed Google Scholar
Maiuri, M. C. et al. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between beclin 1 and Bcl-2/Bcl-XL . Autophagy3, 374–376 (2007). ArticleCASPubMed Google Scholar
Nobukuni, T., Kozma, S. C. & Thomas, G. hvps34, an ancient player, enters a growing game: mTOR complex1/S6K1 signaling. Curr. Opin. Cell Biol.19, 135–141 (2007). ArticleCASPubMed Google Scholar
Bialik, S. & Kimchi, A. The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem.75, 189–210 (2006). ArticleCASPubMed Google Scholar
Raveh, T., Droguett, G., Horwitz, M. S., DePinho, R. A. & Kimchi, A. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nature Cell Biol.3, 1–7 (2001). ArticleCASPubMed Google Scholar
Wang, W. J., Kuo, J. C., Yao, C. C. & Chen, R. H. DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J. Cell Biol.159, 169–179 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jang, C. W. et al. TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase. Nature Cell Biol.4, 51–58 (2002). ArticleCASPubMed Google Scholar
Inbal, B., Bialik, S., Sabanay, I., Shani, G. & Kimchi, A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol.157, 455–468 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shani, G. et al. Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol. Cell Biol.24, 8611–8626 (2004). ArticleCASPubMedPubMed Central Google Scholar
Reef, S. et al. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol. Cell22, 463–475 (2006). Demonstrates that a short isoform of the ARF protein (generated by internal initiation of translation) can induce autophagy, presumably through an action on depolarized but not permeabilized mitochondria. ArticleCASPubMed Google Scholar
Rodriguez-Enriquez, S., Kim, I., Currin, R. T. & Lemasters, J. J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy2, 39–46 (2006). ArticleCASPubMed Google Scholar
Vande Velde, C. et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell Biol.20, 5454–5468 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhu, J. H. et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol.170, 75–86 (2007). ArticleCASPubMedPubMed Central Google Scholar
Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest.115, 2656–2664 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yorimitsu, T., Nair, U., Yang, Z. & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem.281, 30299–30304 (2006). ArticleCASPubMed Google Scholar
Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem.74, 739–789 (2005). ArticleCASPubMed Google Scholar
Criollo, A. et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ.14, 1029–1039 (2007). ArticleCASPubMed Google Scholar
Hetz, C. et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science312, 572–576 (2006). ArticleCASPubMed Google Scholar
Boya, P., Cohen, I., Zamzami, N., Vieira, H. L. & Kroemer, G. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ.9, 465–467 (2002). ArticleCASPubMed Google Scholar
Ogata, M. et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell Biol.26, 9220–9231 (2006). Shows for the first time that ER stress can stimulate autophagy in mammalian cells. ArticleCASPubMedPubMed Central Google Scholar
Kouroku, Y. et al. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ.14, 230–239 (2007). ArticleCASPubMed Google Scholar
Ding, W. X. et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. (2006).
Pyo, J. O. et al. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J. Biol. Chem.280, 20722–20729 (2005). ArticleCASPubMed Google Scholar
Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature Cell Biol.8, 688–699 (2006). ArticleCASPubMed Google Scholar
Fimia, G. M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 24 Jun 2007 (doi:10.1038/nature05925). References 85 and 87 report the identification of two beclin-1-binding proteins that are required for the induction of autophagy. ArticleCAS Google Scholar
Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell122, 927–939 (2005). ArticleCASPubMed Google Scholar
Yanagisawa, H., Miyashita, T., Nakano, Y. & Yamamoto, D. HSpin1, a transmembrane protein interacting with Bcl-2/Bcl-XL, induces a caspase-independent autophagic cell death. Cell Death Differ.10, 798–807 (2003). ArticleCASPubMed Google Scholar
Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell128, 931–946 (2007). Indicates that, during developmental cell death, autophagy may be a mechanism that occurs before (but independently of) apoptosis and allows for optimal heterophagic removal of the dying cell. ArticleCASPubMed Google Scholar
Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell6, 463–477 (2004). ArticleCASPubMed Google Scholar
Tinel, A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-κB pathway. EMBO J.26, 197–208 (2007). ArticleCASPubMed Google Scholar
Arama, E., Agapite, J. & Steller, H. Caspase activity and a specific cytochrome c are required for sperm differentiation in Drosophila. Dev. Cell4, 687–697 (2003). ArticleCASPubMed Google Scholar
Kuranaga, E. & Miura, M. Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol.17, 135–144 (2007). ArticleCASPubMed Google Scholar