Changing directions in the study of chemotaxis (original) (raw)
Yang, X., Dormann, D., Munsterberg, A. E. & Weijer, C. J. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev. Cell3, 425–437 (2002). CASPubMed Google Scholar
Haas, P. & Gilmour, D. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev. Cell10, 673–680 (2006). CASPubMed Google Scholar
Condeelis, J., Singer, R. H. & Segall, J. E. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol.21, 695–718 (2005). CASPubMed Google Scholar
Asano, Y. et al. Keratocyte-like locomotion in _amiB_-null Dictyostelium cells. Cell. Motil. Cytoskeleton59, 17–27 (2004). CASPubMed Google Scholar
Levraud, J. P. et al. Dictyostelium cell death: early emergence and demise of highly polarized paddle cells. J. Cell Biol.160, 1105–1114 (2003). CASPubMedPubMed Central Google Scholar
Gerisch, G. & Keller, H. U. Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J. Cell Sci.52, 1–10 (1981). CASPubMed Google Scholar
Zhelev, D. V., Alteraifi, A. M. & Chodniewicz, D. Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants. Biophys. J.87, 688–695 (2004). CASPubMedPubMed Central Google Scholar
Swanson, J. A. & Taylor, D. L. Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis. Cell28, 225–232 (1982). CASPubMed Google Scholar
Zigmond, S. H., Levitsky, H. I. & Kreel, B. J. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis. J. Cell Biol.89, 585–592 (1981). CASPubMed Google Scholar
Andrew, N. & Insall, R. H. Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nature Cell Biol.9, 193–200 (2007). Showed that cells undergo chemotaxis in shallow gradients by producing pseudopodia at random and then favouring the up-gradient pseudopod. CASPubMed Google Scholar
Mato, J. M., Losada, A., Nanjundiah, V. & Konijn, T. M. Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc. Natl Acad. Sci. USA72, 4991–4993 (1975). CASPubMedPubMed Central Google Scholar
Zigmond, S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol.75, 606–616 (1977). CASPubMed Google Scholar
Song, L. et al. Dictyostelium discoideum chemotaxis: threshold for directed motion. Eur. J. Cell Biol.85, 981–989 (2006). CASPubMed Google Scholar
van Haastert, P. J. & Postma, M. Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophys. J.93, 1787–1796 (2007). CASPubMedPubMed Central Google Scholar
Samadani, A., Mettetal, J. & van Oudenaarden, A. Cellular asymmetry and individuality in directional sensing. Proc. Natl Acad. Sci. USA103, 11549–11554 (2006). CASPubMedPubMed Central Google Scholar
Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem.278, 20445–20448 (2003). CASPubMed Google Scholar
Meinhardt, H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci.112, 2867–2874 (1999). CASPubMed Google Scholar
Postma, M., Bosgraaf, L., Loovers, H. M. & Van Haastert, P. J. Chemotaxis: signalling modules join hands at front and tail. EMBO Rep.5, 35–40 (2004). CASPubMedPubMed Central Google Scholar
Parent, C. A. & Devreotes, P. N. Molecular genetics of signal transduction in Dictyostelium. Annu. Rev. Biochem.65, 411–440 (1996). CASPubMed Google Scholar
Janetopoulos, C., Jin, T. & Devreotes, P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science291, 2408–2411 (2001). CASPubMed Google Scholar
Parent, C. A., Blacklock, B. J., Froelich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell95, 81–91 (1998). A key paper that provided the first evidence that chemoattractant gradients induce steep PtdIns(3,4,5)P3gradients in the plasma membrane of cells that are undergoing chemotaxis. CASPubMed Google Scholar
Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J.18, 2092–2105 (1999). CASPubMedPubMed Central Google Scholar
Janetopoulos, C., Ma, L., Devreotes, P. N. & Iglesias, P. A. Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl Acad. Sci. USA101, 8951–8956 (2004). CASPubMedPubMed Central Google Scholar
Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science287, 1037–1040 (2000). CASPubMedPubMed Central Google Scholar
Nishio, M. et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nature Cell Biol.9, 36–44 (2007). Demonstrated the consequences of genetic ablation of SHIP1 and PI3Kγ for chemotaxis of mouse neutrophils. CASPubMed Google Scholar
Schneider, I. C. & Haugh, J. M. Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts. J. Cell Biol.171, 883–892 (2005). CASPubMedPubMed Central Google Scholar
Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell109, 611–623 (2002). CASPubMed Google Scholar
Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell109, 599–610 (2002). CASPubMed Google Scholar
Sasaki, A. T. et al. G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J. Cell Biol.178, 185–191 (2007). CASPubMedPubMed Central Google Scholar
Postma, M. et al. Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches. J. Cell Sci.117, 2925–2935 (2004). CASPubMed Google Scholar
Xu, X., Meier-Schellersheim, M., Yan, J. & Jin, T. Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. J. Cell Biol.178, 141–153 (2007). CASPubMedPubMed Central Google Scholar
Rickert, P., Weiner, O. D., Wang, F., Bourne, H. R. & Servant, G. Leukocytes navigate by compass: roles of PI3Kγ and its lipid products. Trends Cell Biol.10, 466–473 (2000). CASPubMedPubMed Central Google Scholar
Chen, L. et al. Two phases of actin polymerization display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis. Mol. Biol. Cell14, 5028–5037 (2003). CASPubMedPubMed Central Google Scholar
Ward, S. G. Do phosphoinositide 3-kinases direct lymphocyte navigation? Trends Immunol.25, 67–74 (2004). CASPubMed Google Scholar
Funamoto, S., Milan, K., Meili, R. & Firtel, R. A. Role of phosphatidylinositol 3′ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in Dictyostelium. J. Cell Biol.153, 795–810 (2001). CASPubMedPubMed Central Google Scholar
Loovers, H. M. et al. Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase. Mol. Biol. Cell.17, 1503–1513 (2006). CASPubMedPubMed Central Google Scholar
Takeda, K., Sasaki, A. T., Ha, H., Seung, H. A. & Firtel, R. A. Role of phosphatidylinositol 3-kinases in chemotaxis in Dictyostelium. J. Biol. Chem.282, 11874–11884 (2007). CASPubMed Google Scholar
Hoeller, O. & Kay, R. R. Chemotaxis in the absence of PIP3 gradients. Curr. Biol.17, 813–817 (2007). Showed that chemotaxis in steep cAMP gradients remains efficient when the ability to form PtdIns(3,4,5)P3gradients is genetically removed. CASPubMed Google Scholar
Niggli, V. & Keller, H. The phosphatidylinositol 3-kinase inhibitor wortmannin markedly reduces chemotactic peptide-induced locomotion and increases in cytoskeletal actin in human neutrophils. Eur. J. Pharmacol.335, 43–52 (1997). CASPubMed Google Scholar
Knall, C., Worthen, G. S. & Johnson, G. L. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc. Natl Acad. Sci. USA94, 3052–3057 (1997). CASPubMedPubMed Central Google Scholar
Sadhu, C., Masinovsky, B., Dick, K., Sowell, C. G. & Staunton, D. E. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol.170, 2647–2654 (2003). CASPubMed Google Scholar
Ferguson, G. J. et al. PI(3)Kγ has an important context-dependent role in neutrophil chemokinesis. Nature Cell Biol.9, 86–91 (2007). CASPubMed Google Scholar
Heit, B., Liu, L., Puri, K. D. & Kubes, P. PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J. Cell Sci.121, 205–214 (2008). CASPubMed Google Scholar
Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase g in inflammation. Science287, 1049–1053 (2000). CASPubMed Google Scholar
Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science287, 1040–1046 (2000). CASPubMed Google Scholar
Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science287, 1046–1049 (2000). CASPubMed Google Scholar
Hannigan, M. et al. Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during _N_-formyl-Met-Leu-Phe-induced chemotaxis. Proc. Natl Acad. Sci. USA99, 3603–3608 (2002). CASPubMedPubMed Central Google Scholar
Heit, B., Tavener, S., Raharjo, E. & Kubes, P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol.159, 91–102 (2002). CASPubMedPubMed Central Google Scholar
Kae, H., Lim, C. J., Spiegelman, G. B. & Weeks, G. Chemoattractant-induced Ras activation during Dictyostelium aggregation. EMBO Rep.5, 602–606 (2004). CASPubMedPubMed Central Google Scholar
Sasaki, A. T., Chun, C., Takeda, K. & Firtel, R. A. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol.167, 505–518 (2004). CASPubMedPubMed Central Google Scholar
Bolourani, P., Spiegelman, G. B. & Weeks, G. Delineation of the roles played by RasG and RasC in cAMP-dependent signal transduction during the early development of Dictyostelium discoideum. Mol. Biol. Cell17, 4543–4550 (2006). CASPubMedPubMed Central Google Scholar
Bolourani, P., Spiegelman, G. B. & Weeks, G. Rap1 activation in response to cAMP occurs downstream of Ras activation during Dictyostelium aggregation. J. Biol. Chem.283, 10232–10240 (2008). Showed that chemotaxis to cAMP is abolished in a RasC−RasG−double mutant, despite expression of the cAMP receptor. CASPubMed Google Scholar
Chen, M. Y., Long, Y. & Devreotes, P. N. A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium. Genes Dev.11, 3218–3231 (1997). CASPubMedPubMed Central Google Scholar
Lee, S. et al. TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol. Biol. Cell16, 4572–4583 (2005). Showed that TORC2 mutants are chemotactically impaired. CASPubMedPubMed Central Google Scholar
van Haastert, P. J., Keizer-Gunnink, I. & Kortholt, A. Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J. Cell Biol.177, 809–816 (2007). CASPubMedPubMed Central Google Scholar
Veltman, D. M., Keizer-Gunnik, I. & Van Haastert, P. J. Four key signaling pathways mediating chemotaxis in Dictyostelium discoideum. J. Cell Biol.180, 747–753 (2008). CASPubMedPubMed Central Google Scholar
Traynor, D., Milne, J. L., Insall, R. H. & Kay, R. R. Ca2+ signalling is not required for chemotaxis in Dictyostelium. EMBO J.19, 4846–4854 (2000). CASPubMedPubMed Central Google Scholar
Bosgraaf, L. et al. A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. EMBO J.21, 4560–4570 (2002). CASPubMedPubMed Central Google Scholar
Wessels, D., Vawter-Hugart, H., Murray, J. & Soll, D. R. Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium. Cell. Motil. Cytoskeleton27, 1–12 (1994). CASPubMed Google Scholar
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell112, 453–465 (2003). Review of dendritic actin dynamics at the leading edge. CASPubMed Google Scholar
Rafelski, S. M. & Theriot, J. A. Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem.73, 209–239 (2004). CASPubMed Google Scholar
Bretscher, M. S. Endocytosis: relation to capping and cell locomotion. Science224, 681–686 (1984). CASPubMed Google Scholar
Lee, J., Gustafsson, M., Magnusson, K. E. & Jacobson, K. The direction of membrane lipid flow in locomoting polymorphonuclear leukocytes. Science247, 1229–1233 (1990). CASPubMed Google Scholar
Traynor, D. & Kay, R. R. Possible roles of the endocytic cycle in cell motility. J. Cell Sci.120, 2318–2327 (2007). CASPubMed Google Scholar
Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature352, 126–131 (1991). CASPubMed Google Scholar
Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science295, 1083–1086 (2002). CASPubMed Google Scholar
Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol.145, 1009–1026 (1999). CASPubMedPubMed Central Google Scholar
Yang, C. et al. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol.5, e317 (2007). PubMedPubMed Central Google Scholar
Koestler, S. A., Auinger, S., Vinzenz, M., Rottner, K. & Small, J. V. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nature Cell Biol.10, 306–313 (2008). CASPubMed Google Scholar
Pantaloni, D., Le Clainche, C. & Carlier, M. F. Mechanism of actin-based motility. Science292, 1502–1506 (2001). CASPubMed Google Scholar
Goley, E. D. & Welch, M. D. The ARP2/3 complex: an actin nucleator comes of age. Nature Rev. Mol. Cell Biol.7, 713–726 (2006). CAS Google Scholar
Vartiainen, M. K. & Machesky, L. M. The WASP–Arp2/3 pathway: genetic insights. Curr. Opin. Cell Biol.16, 174–181 (2004). CASPubMed Google Scholar
Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol.162, 1079–1088 (2003). CASPubMedPubMed Central Google Scholar
Langridge, P. D. & Kay, R. R. Mutants in the Dictyostelium Arp2/3 complex and chemoattractant-induced actin polymerization. Exp. Cell Res.313, 2563–2574 (2007). CASPubMed Google Scholar
Stradal, T. E. & Scita, G. Protein complexes regulating Arp2/3-mediated actin assembly. Curr. Opin. Cell Biol.18, 4–10 (2006). CASPubMed Google Scholar
Ibarra, N., Blagg, S. L., Vazquez, F. & Insall, R. H. Nap1 regulates Dictyostelium cell motility and adhesion through SCAR-dependent and -independent pathways. Curr. Biol.16, 717–722 (2006). CASPubMed Google Scholar
Myers, S. A., Han, J. W., Lee, Y., Firtel, R. A. & Chung, C. Y. A Dictyostelium homologue of WASP is required for polarized F-actin assembly during chemotaxis. Mol. Biol. Cell16, 2191–2206 (2005). CASPubMedPubMed Central Google Scholar
Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M. & Faix, J. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nature Cell Biol.7, 619–625 (2005). CASPubMed Google Scholar
DesMarais, V., Macaluso, F., Condeelis, J. & Bailly, M. Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J. Cell Sci.117, 3499–3510 (2004). CASPubMed Google Scholar
Delorme, V. et al. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev. Cell13, 646–662 (2007). CASPubMedPubMed Central Google Scholar
Vicker, M. G. Eukaryotic cell locomotion depends on the propagation of self-organized reaction-diffusion waves and oscillations of actin filament assembly. Exp. Cell Res.275, 54–66 (2002). CASPubMed Google Scholar
Bretschneider, T. et al. Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Curr. Biol.14, 1–10 (2004). Detected travelling waves of actin polymerization on the plasma membrane ofDictyosteliumcells. CASPubMed Google Scholar
Diez, S., Gerisch, G., Anderson, K., Muller-Taubenberger, A. & Bretschneider, T. Subsecond reorganization of the actin network in cell motility and chemotaxis. Proc. Natl Acad. Sci. USA102, 7601–7606 (2005). CASPubMedPubMed Central Google Scholar
Gerisch, G. et al. Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys. J.87, 3493–3503 (2004). CASPubMedPubMed Central Google Scholar
Weiner, O. D., Marganski, W. A., Wu, L. F., Altschuler, S. J. & Kirschner, M. W. An actin-based wave generator organizes cell motility. PLoS Biol.5, e221 (2007). Detected travelling waves of HEM1 — and presumably of actin polymerization — on the plasma membrane of chemotactically stimulated HL60 cells. PubMedPubMed Central Google Scholar
Cunningham, C. C. Actin polymerization and intracellular solvent flow in cell surface blebbing. J. Cell Biol.129, 1589–1599 (1995). CASPubMed Google Scholar
Keller, H. & Eggli, P. Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. Cell. Motil. Cytoskeleton41, 181–193 (1998). CASPubMed Google Scholar
Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells. Nature435, 365–369 (2005). CASPubMedPubMed Central Google Scholar
Yoshida, K. & Soldati, T. Dissection of amoeboid movement into two mechanically distinct modes. J. Cell Sci.119, 3833–3844 (2006). Demonstrated that blebbing contributes toDictyosteliumcell motility. CASPubMed Google Scholar
Langridge, P. D. & Kay, R. R. Blebbing of Dictyostelium cells in response to chemoattractant. Exp. Cell Res.312, 2009–2017 (2006). CASPubMed Google Scholar
Charras, G. T., Hu, C. K., Coughlin, M. & Mitchison, T. J. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol.175, 477–490 (2006). CASPubMedPubMed Central Google Scholar
Trinkaus, J. P. Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev. Biol.30, 69–103 (1973). CASPubMed Google Scholar
Blaser, H. et al. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell11, 613–627 (2006). Showed the blebbing motility of zebrafish primordial germ cells. CASPubMed Google Scholar
Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol.5, 711–719 (2003). CASPubMed Google Scholar
Fukui, Y., Uyeda, T. Q., Kitayama, C. & Inoue, S. How well can an amoeba climb? Proc. Natl Acad. Sci. USA97, 10020–10025 (2000). CASPubMedPubMed Central Google Scholar
Wessels, D. et al. Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Dev. Biol.128, 164–177 (1988). CASPubMed Google Scholar
Laevsky, G. & Knecht, D. A. Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J. Cell Sci.116, 3761–3770 (2003). CASPubMed Google Scholar
Keller, H., Rentsch, P. & Hagmann, J. Differences in cortical actin structure and dynamics document that different types of blebs are formed by distinct mechanisms. Exp. Cell Res.277, 161–172 (2002). CASPubMed Google Scholar
Lawson, M. A. & Maxfield, F. R. Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature377, 75–79 (1995). CASPubMed Google Scholar
Murray, J., Vawter-Hugart, H., Voss, E. & Soll, D. R. Three-dimensional motility cycle in leukocytes. Cell. Motil. Cytoskeleton22, 211–223 (1992). CASPubMed Google Scholar
Shelden, E. & Knecht, D. A. Dictyostelium cell shape generation requires myosin II. Cell. Motil. Cytoskeleton35, 59–67 (1996). CASPubMed Google Scholar
Weber, I., Wallraff, E., Albrecht, R. & Gerisch, G. Motility and substratum adhesion of Dictyostelium wild-type and cytoskeletal mutant cells: a study by RICM/bright-field double-view image analysis. J. Cell Sci.108, 1519–1530 (1995). CASPubMed Google Scholar
Mohandas, N. & Evans, E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct.23, 787–818 (1994). CASPubMed Google Scholar
Aguado-Velasco, C. & Bretscher, M. S. Circulation of the plasma membrane in Dictyostelium. Mol. Biol. Cell.10, 4419–4427 (1999). CASPubMedPubMed Central Google Scholar
Wessels, D. et al. Clathrin plays a novel role in the regulation of cell polarity, pseudopod formation, uropod stability and motility in Dictyostelium. J. Cell Sci.113, 21–36 (2000). CASPubMed Google Scholar
Thompson, C. R. L. & Bretscher, M. S. Cell polarity and locomotion, as well as endocytosis, depend on NSF. Development129, 4185–4192 (2002). Used a temperature-sensitive mutant to show that NSF — which is essential for the endocytic cycle — is also essential for cell movement. CASPubMed Google Scholar
Lomabardi, M. L., Knecht, D. A. & Lee, J. Mechano–chemical signalling maintains the rapid movement of Dictyostelium cells. Exp. Cell Res.314, 1850–1859 (2008). Google Scholar