Beyond polymer polarity: how the cytoskeleton builds a polarized cell (original) (raw)
Pollard, T. D. & Cooper, J. A. Actin and actin binding proteins. A critical evaluation of mechanisms and functions. Ann. Rev. Biochem.55, 987–1035 (1986). CASPubMed Google Scholar
Nogales, E. Structural insights into microtubule function. Annu. Rev. Biochem.69, 277–302 (2000). CASPubMed Google Scholar
Goldman, R. D., Grin, B., Mendez, M. G. & Kuczmarski, E. R. Intermediate filaments: versatile building blocks of cell structure. Curr. Opin. Cell Biol.20, 28–34 (2008). CASPubMedPubMed Central Google Scholar
Longtine, M. S. & Bi, E. Regulation of septin organization and function in yeast. Trends Cell Biol.13, 403–409 (2003). CASPubMed Google Scholar
Spiliotis, E. T., Hunt, S. J., Hu, Q., Kinoshita, M. & Nelson, W. J. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J. Cell Biol.180, 295–303 (2008). CASPubMedPubMed Central Google Scholar
Kremer, B. E., Adang, L. A. & Macara, I. G. Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell130, 837–850 (2007). CASPubMedPubMed Central Google Scholar
Ikebe, M. Regulation of the function of mammalian myosin and its conformational change. Biochem. Biophys. Res. Commun.369, 157–164 (2008). CASPubMed Google Scholar
Kikkawa, M. The role of microtubules in processive kinesin movement. Trends Cell Biol.18, 128–135 (2008). CASPubMed Google Scholar
Block, S. M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J.92, 2986–2995 (2007). CASPubMedPubMed Central Google Scholar
Numata, N. et al. Molecular mechanism of force generation by dynein, a molecular motor belonging to the AAA+ family. Biochem. Soc. Trans.36, 131–135 (2008). CASPubMed Google Scholar
Kincaid, M. M. & King, S. J. Motors and their tethers: the role of secondary binding sites in processive motility. Cell Cycle5, 2733–2737 (2006). CASPubMed Google Scholar
Manahan, C. L., Iglesias, P. A., Long, Y. & Devreotes, P. N. Chemoattractant signaling in Dictyostelium discoideum. Annu. Rev. Cell Dev. Biol.20, 223–253 (2004). CASPubMed Google Scholar
Irazoqui, J. E., Gladfelter, A. S. & Lew, D. J. Scaffold-mediated symmetry breaking by Cdc42p. Nature Cell Biol.5, 1062–1070 (2003). Highlights a pathway of symmetry breaking in yeast through the assembly of a signalling complex that contains Cdc42, which contrasts with mechanisms that involve cytoskeletal elements. CASPubMed Google Scholar
Wegner, A. & Engel, J. Kinetics of the cooperative association of actin to actin filaments. Biophys. Chem.3, 215–225 (1975). CASPubMed Google Scholar
Barton, J. S. & Riazi, G. H. Evidence for two growth steps in microtubule polymerization. Biochim. Biophys. Acta630, 392–401 (1980). CASPubMed Google Scholar
Pollard, T. D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct.36, 451–477 (2007). CASPubMed Google Scholar
Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol.145, 1009–1026 (1999). CASPubMedPubMed Central Google Scholar
Chhabra, E. S. & Higgs, H. N. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biol.9, 1110–1121 (2007). CASPubMed Google Scholar
Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol.16, 522–529 (2006). CASPubMed Google Scholar
Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol.16, 106–112 (2004). CASPubMed Google Scholar
Lansbergen, G. & Akhmanova, A. Microtubule plus end: a hub of cellular activities. Traffic7, 499–507 (2006). CASPubMed Google Scholar
Martin, S. G., McDonald, W. H., Yates, J. R. & Chang, F. Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity. Dev. Cell8, 479–491 (2005). Uses elegant live-cell imaging inS. pombeto identify a direct mechanism for how microtubules deposit factors at cortical sites that affect actin polymerization and cell polarity. CASPubMed Google Scholar
Segal, M. & Bloom, K. Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends Cell Biol.11, 160–166 (2001). CASPubMed Google Scholar
Cowan, C. R. & Hyman, A. A. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu. Rev. Cell Dev. Biol.20, 427–453 (2004). CASPubMed Google Scholar
Schuyler, S. C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci.114, 247–255 (2001). CASPubMed Google Scholar
Kozlowski, C., Srayko, M. & Nedelec, F. Cortical microtubule contacts position the spindle in C. elegans embryos. Cell129, 499–510 (2007). CASPubMed Google Scholar
Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y. & Bretscher, A. Mechanisms of polarized growth and organelle segregation in yeast. Annu. Rev. Cell Dev. Biol.20, 559–591 (2004). CASPubMed Google Scholar
Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol.4, 32–41 (2002). CASPubMed Google Scholar
Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol.4, 42–50 (2002). References 28 and 29 established a direct role for formin-family proteins in the assembly of actin cables that mediate polarized transport in yeast. CASPubMed Google Scholar
Liu, H. P. & Bretscher, A. Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell57, 233–242 (1989). CASPubMed Google Scholar
Adams, A. E., Botstein, D. & Drubin, D. G. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature354, 404–408 (1991). CASPubMed Google Scholar
Park, H. O. & Bi, E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev.71, 48–96 (2007). CASPubMedPubMed Central Google Scholar
Johnson, D. I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev.63, 54–105 (1999). CASPubMedPubMed Central Google Scholar
Evangelista, M. et al. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science276, 118–122 (1997). CASPubMed Google Scholar
Imamura, H. et al. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J.16, 2745–2755 (1997). CASPubMedPubMed Central Google Scholar
Dong, Y., Pruyne, D. & Bretscher, A. Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J. Cell Biol.161, 1081–1092 (2003). CASPubMedPubMed Central Google Scholar
Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science299, 1231–1235 (2003). Shows a simple mechanism in yeast for symmetry breaking that involves a positive-feedback loop composed of actin- and myosin-mediated transport of the signalling molecule Cdc42, and Cdc42-controlled assembly of orientated actin arrays. CASPubMed Google Scholar
Pruyne, D., Gao, L., Bi, E. & Bretscher, A. Stable and dynamic axes of polarity use distinct formin isoforms in budding yeast. Mol. Biol. Cell15, 4971–4989 (2004). CASPubMedPubMed Central Google Scholar
Wedlich-Soldner, R., Wai, S. C., Schmidt, T. & Li, R. Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling. J. Cell Biol.166, 889–900 (2004). CASPubMedPubMed Central Google Scholar
Severson, A. F. & Bowerman, B. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J. Cell Biol.161, 21–26 (2003). CASPubMedPubMed Central Google Scholar
Cuenca, A. A., Schetter, A., Aceto, D., Kemphues, K. & Seydoux, G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development130, 1255–1265 (2003). CASPubMed Google Scholar
Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior–posterior polarity in the early C. elegans embryo. Dev. Cell7, 413–424 (2004). This seminal work in aC. elegansone-cell embryo shows the crucial role of a cortical contractile network that contains actin and myosin-II in establishing an asymmetric distribution of the PAR polarity complexes. A similar mechanism might also operate during the establishment of epithelial apical–basal polarity. CASPubMed Google Scholar
Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development122, 3133–3140 (1996). CASPubMed Google Scholar
Hao, Y., Boyd, L. & Seydoux, G. Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev. Cell10, 199–208 (2006). CASPubMedPubMed Central Google Scholar
Wedlich-Soldner, R. & Li, R. Spontaneous cell polarization: undermining determinism. Nature Cell Biol.5, 267–270 (2003). CASPubMed Google Scholar
Cowan, C. R. & Hyman, A. A. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature431, 92–96 (2004). CASPubMed Google Scholar
Jenkins, N., Saam, J. R. & Mango, S. E. CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science313, 1298–1301 (2006). CASPubMed Google Scholar
Motegi, F. & Sugimoto, A. Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nature Cell Biol.8, 978–985 (2006). CASPubMed Google Scholar
Piekny, A., Werner, M. & Glotzer, M. Cytokinesis: welcome to the Rho zone. Trends Cell Biol.15, 651–658 (2005). CASPubMed Google Scholar
Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell112, 535–548 (2003). CASPubMed Google Scholar
Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell116, 457–466 (2004). Describes the surprising discovery that epithelial cells have the capacity to undergo spontaneous symmetry breaking without resorting to cell–cell or cell–matrix contacts. This highlights the commonality of self-organization as the basic principle that underlies cell polarization. CASPubMed Google Scholar
Williams, T. & Brenman, J. E. LKB1 and AMPK in cell polarity and division. Trends Cell Biol.18, 193–198 (2008). CASPubMed Google Scholar
Lee, J. H. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature447, 1017–1020 (2007). CASPubMed Google Scholar
Mirouse, V., Swick, L. L., Kazgan, N., St Johnston, D. & Brenman, J. E. LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J. Cell Biol.177, 387–392 (2007). CASPubMedPubMed Central Google Scholar
Martin-Belmonte, F. & Mostov, K. Regulation of cell polarity during epithelial morphogenesis. Curr. Opin. Cell Biol.20, 227–234 (2008). CASPubMed Google Scholar
Di Nardo, A. et al. Arp2/3 complex-deficient mouse fibroblasts are viable and have normal leading-edge actin structure and function. Proc. Natl Acad. Sci. USA102, 16263–16268 (2005). CASPubMedPubMed Central Google Scholar
Zigmond, S. H. Beginning and ending an actin filament: control at the barbed end. Curr. Top. Dev. Biol.63, 145–188 (2004). CASPubMed Google Scholar
Gunning, P. W., Schevzov, G., Kee, A. J. & Hardeman, E. C. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol.15, 333–341 (2005). CASPubMed Google Scholar
Fanning, A. S., Wolenski, J. S., Mooseker, M. S. & Izant, J. G. Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms. Cell. Motil. Cytoskeleton29, 29–45 (1994). CASPubMed Google Scholar
Wawro, B. et al. Tropomyosin regulates elongation by formin at the fast-growing end of the actin filament. Biochemistry46, 8146–8155 (2007). CASPubMed Google Scholar
Blanchoin, L., Pollard, T. D. & Hitchcock-DeGregori, S. E. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr. Biol.11, 1300–1304 (2001). CASPubMed Google Scholar
Rouiller, I. et al. The structural basis of actin filament branching by the Arp2/3 complex. J. Cell Biol.180, 887–895 (2008). CASPubMedPubMed Central Google Scholar
Bernstein, B. W. & Bamburg, J. R. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell. Motil.2, 1–8 (1982). CASPubMed Google Scholar
Ono, S. & Ono, K. Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics. J. Cell Biol.156, 1065–1076 (2002). CASPubMedPubMed Central Google Scholar
Weiner, O. D. et al. A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol.4, 509–513 (2002). CASPubMed Google Scholar
Wong, K., Van Keymeulen, A. & Bourne, H. R. PDZRhoGEF and myosin II localize RhoA activity to the back of polarizing neutrophil-like cells. J. Cell Biol.179, 1141–1148 (2007). CASPubMedPubMed Central Google Scholar
Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol.147, 1009–1022 (1999). CASPubMedPubMed Central Google Scholar
Rosenfeldt, H., Castellone, M. D., Randazzo, P. A. & Gutkind, J. S. Rac inhibits thrombin-induced Rho activation: evidence of a Pak-dependent GTPase crosstalk. J. Mol. Signal1, 8 (2006). PubMedPubMed Central Google Scholar
Salhia, B. et al. Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res.65, 8792–8800 (2005). CASPubMed Google Scholar
Nimnual, A. S., Taylor, L. J. & Bar-Sagi, D. Redox-dependent downregulation of Rho by Rac. Nature Cell Biol.5, 236–241 (2003). CASPubMed Google Scholar
Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell114, 201–214 (2003). Shows a mechanism in neutrophils by which mutually exclusive assembly of two different kinds of dynamic cytoskeletal structures promotes the establishment of the front–back polarity of motile cells. CASPubMed Google Scholar
Wong, K., Pertz, O., Hahn, K. & Bourne, H. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc. Natl Acad. Sci. USA103, 3639–3644 (2006). CASPubMedPubMed Central Google Scholar
Narang, A. Spontaneous polarization in eukaryotic gradient sensing: a mathematical model based on mutual inhibition of frontness and backness pathways. J. Theor. Biol.240, 538–553 (2006). CASPubMed Google Scholar
Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol.9, 11–20 (1999). CASPubMed Google Scholar
Arimura, N. & Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature Rev. Neurosci.8, 194–205 (2007). CAS Google Scholar
Wiggin, G. R., Fawcett, J. P. & Pawson, T. Polarity proteins in axon specification and synaptogenesis. Dev. Cell8, 803–816 (2005). CASPubMed Google Scholar
Baas, P. W. & Black, M. M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J. Cell Biol.111, 495–509 (1990). CASPubMed Google Scholar
Ferreira, A. & Caceres, A. The expression of acetylated microtubules during axonal and dendritic growth in cerebellar macroneurons which develop in vitro. Brain Res. Dev. Brain Res.49, 205–213 (1989). CASPubMed Google Scholar
Robson, S. J. & Burgoyne, R. D. Differential localisation of tyrosinated, detyrosinated, and acetylated α-tubulins in neurites and growth cones of dorsal root ganglion neurons. Cell. Motil. Cytoskeleton12, 273–282 (1989). CASPubMed Google Scholar
Witte, H., Neukirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol.180, 619–632 (2008). Shows that microtubule stabilization in one of the minor neurites of hippocampal neurons is sufficient to break symmetry and specify the formation of an axon. CASPubMedPubMed Central Google Scholar
Dotti, C. G. & Banker, G. Intracellular organization of hippocampal neurons during the development of neuronal polarity. J. Cell Sci. Suppl.15, 75–84 (1991). CASPubMed Google Scholar
de Anda, F. C. et al. Centrosome localization determines neuronal polarity. Nature436, 704–708 (2005). PubMed Google Scholar
Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science283, 1931–1934 (1999). CASPubMed Google Scholar
Garvalov, B. K. et al. Cdc42 regulates cofilin during the establishment of neuronal polarity. J. Neurosci.27, 13117–13129 (2007). CASPubMedPubMed Central Google Scholar
Da Silva, J. S., Hasegawa, T., Miyagi, T., Dotti, C. G. & Abad-Rodriguez, J. Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nature Neurosci.8, 606–615 (2005). CASPubMed Google Scholar
Nakata, T. & Hirokawa, N. Neuronal polarity and the kinesin superfamily proteins. Sci. STKE 2007, pe6 (2007).
Nishimura, T. et al. Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity. Nature Cell Biol.6, 328–334 (2004). CASPubMed Google Scholar
Schwamborn, J. C. & Puschel, A. W. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nature Neurosci.7, 923–929 (2004). CASPubMed Google Scholar
Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell112, 63–75 (2003). CASPubMed Google Scholar
Rolls, M. M. & Doe, C. Q. Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Nature Neurosci.7, 1293–1295 (2004). CASPubMed Google Scholar
Chen, Y. M. et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc. Natl Acad. Sci. USA103, 8534–8539 (2006). CASPubMedPubMed Central Google Scholar
Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell89, 297–308 (1997). CASPubMed Google Scholar
Larcher, J. C., Boucher, D., Lazereg, S., Gros, F. & Denoulet, P. Interaction of kinesin motor domains with α- and β-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J. Biol. Chem.271, 22117–22124 (1996). CASPubMed Google Scholar
Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem.273, 9797–9803 (1998). CASPubMed Google Scholar
Lin, S. X., Gundersen, G. G. & Maxfield, F. R. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (Glu) microtubules and kinesin. Mol. Biol. Cell13, 96–109 (2002). CASPubMedPubMed Central Google Scholar
Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol.16, 2166–2172 (2006). CASPubMed Google Scholar
Jacobson, C., Schnapp, B. & Banker, G. A. A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron49, 797–804 (2006). CASPubMed Google Scholar
Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol.162, 1045–1055 (2003). References 97 and 98 provide evidence that the kinesin motor domain alone is capable of interpreting cues from microtubules to direct their translocation into specific neuronal processes. CASPubMedPubMed Central Google Scholar
van Drogen, F., Stucke, V. M., Jorritsma, G. & Peter, M. MAP kinase dynamics in response to pheromones in budding yeast. Nature Cell Biol.3, 1051–1059 (2001). CASPubMed Google Scholar
Valdez-Taubas, J. & Pelham, H. R. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol.13, 1636–1640 (2003). Elegantly shows the crucial role for endocytic recycling in yeast in the polarized localization of membrane proteins. CASPubMed Google Scholar
Boyd, C., Hughes, T., Pypaert, M. & Novick, P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol.167, 889–901 (2004). CASPubMedPubMed Central Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol.7, 404–414 (2006). CAS Google Scholar
Irazoqui, J. E., Howell, A. S., Theesfeld, C. L. & Lew, D. J. Opposing roles for actin in Cdc42p polarization. Mol. Biol. Cell16, 1296–1304 (2005). CASPubMedPubMed Central Google Scholar
Marco, E., Wedlich-Soldner, R., Li, R., Altschuler, S. J. & Wu, L. F. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell129, 411–422 (2007). CASPubMedPubMed Central Google Scholar
Castagnetti, S., Behrens, R. & Nurse, P. End4/Sla2 is involved in establishment of a new growth zone in Schizosaccharomyces pombe. J. Cell Sci.118, 1843–1850 (2005). CASPubMed Google Scholar
Bretscher, M. S. Endocytosis: relation to capping and cell locomotion. Science224, 681–686 (1984). CASPubMed Google Scholar
Coumailleau, F. & Gonzalez-Gaitan, M. From endocytosis to tumors through asymmetric cell division of stem cells. Curr. Opin. Cell Biol.20, 462–469 (2008). CASPubMed Google Scholar
Thompson, A. et al. Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. Mol. Biol. Cell18, 2687–2697 (2007). CASPubMedPubMed Central Google Scholar
Prigozhina, N. L. & Waterman-Storer, C. M. Decreased polarity and increased random motility in PtK1 epithelial cells correlate with inhibition of endosomal recycling. J. Cell Sci.119, 3571–3582 (2006). CASPubMed Google Scholar
Lu, H. & Bilder, D. Endocytic control of epithelial polarity and proliferation in Drosophila. Nature Cell Biol.7, 1232–1239 (2005). PubMed Google Scholar
Tanaka, T. & Nakamura, A. The endocytic pathway acts downstream of Oskar in Drosophila germ plasm assembly. Development135, 1107–1117 (2008). CASPubMed Google Scholar
Vanzo, N., Oprins, A., Xanthakis, D., Ephrussi, A. & Rabouille, C. Stimulation of endocytosis and actin dynamics by Oskar polarizes the Drosophila oocyte. Dev. Cell12, 543–555 (2007). CASPubMed Google Scholar
Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol.9, 1066–1073 (2007). CASPubMed Google Scholar
Meinhardt, H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci.112, 2867–2874 (1999). CASPubMed Google Scholar
Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell109, 599–610 (2002). CASPubMed Google Scholar
Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell109, 611–623 (2002). CASPubMed Google Scholar
Sancho, D. et al. Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunol. Rev.189, 84–97 (2002). CASPubMed Google Scholar
Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl Acad. Sci. USA92, 5027–5031 (1995). CASPubMedPubMed Central Google Scholar
Kuhn, J. R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity16, 111–121 (2002). CASPubMed Google Scholar
Combs, J. et al. Recruitment of dynein to the Jurkat immunological synapse. Proc. Natl Acad. Sci. USA103, 14883–14888 (2006). CASPubMedPubMed Central Google Scholar
Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature443, 462–465 (2006). CASPubMed Google Scholar
Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell106, 489–498 (2001). CASPubMed Google Scholar
Palazzo, A. F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol.11, 1536–1541 (2001). CASPubMed Google Scholar
Solecki, D. J., Model, L., Gaetz, J., Kapoor, T. M. & Hatten, M. E. Par6α signaling controls glial-guided neuronal migration. Nature Neurosci.7, 1195–1203 (2004). CASPubMed Google Scholar
Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev. Cell7, 871–883 (2004). CASPubMed Google Scholar
Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell121, 451–463 (2005). Shows that MTOC orientation or centrosome orientation in migrating fibroblasts results from movement of the nucleus, rather than movement of the centrosome. CASPubMed Google Scholar
Yamana, N. et al. The Rho–mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol. Cell. Biol.26, 6844–6858 (2006). CASPubMedPubMed Central Google Scholar
Gundersen, G. G. & Bulinski, J. C. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl Acad. Sci. USA85, 5946–5950 (1988). CASPubMedPubMed Central Google Scholar
Cook, T. A., Nagasaki, T. & Gundersen, G. G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol.141, 175–185 (1998). CASPubMedPubMed Central Google Scholar
Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell115, 343–354 (2003). CASPubMed Google Scholar
Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol.3, 723–729 (2001). CASPubMed Google Scholar
Infante, A. S., Stein, M. S., Zhai, Y., Borisy, G. G. & Gundersen, G. G. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci.113, 3907–3919 (2000). CASPubMed Google Scholar
Bartolini, F. et al. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J. Cell Biol.181, 523–536 (2008). Shows that a formin, mDia2, with known actin-nucleation activity, independently and directly stabilizes microtubules. CASPubMedPubMed Central Google Scholar
Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. & Gundersen, G. G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science303, 836–839 (2004). CASPubMed Google Scholar
Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol.6, 820–830 (2004). CASPubMed Google Scholar
Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell104, 923–935 (2001). CASPubMed Google Scholar
Lansbergen, G. et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β. Dev. Cell11, 21–32 (2006). CASPubMed Google Scholar
Wittmann, T. & Waterman-Storer, C. M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells. J. Cell Biol.169, 929–939 (2005). CASPubMedPubMed Central Google Scholar
Bergmann, J. E., Kupfer, A. & Singer, S. J. Membrane insertion at the leading edge of motile fibroblasts. Proc. Natl Acad. Sci. USA80, 1367–1371 (1983). CASPubMedPubMed Central Google Scholar
Schmoranzer, J., Kreitzer, G. & Simon, S. M. Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. J. Cell Sci.116, 4513–4519 (2003). CASPubMed Google Scholar
Musch, A. Microtubule organization and function in epithelial cells. Traffic5, 1–9 (2004). PubMed Google Scholar
Chausovsky, A., Bershadsky, A. D. & Borisy, G. G. Cadherin-mediated regulation of microtubule dynamics. Nature Cell Biol.2, 797–804 (2000). CASPubMed Google Scholar
Harris, T. J. & Peifer, M. aPKC controls microtubule organization to balance adherens junction symmetry and planar polarity during development. Dev. Cell12, 727–738 (2007). CASPubMedPubMed Central Google Scholar
Reilein, A. & Nelson, W. J. APC is a component of an organizing template for cortical microtubule networks. Nature Cell Biol.7, 463–473 (2005). CASPubMed Google Scholar
Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol.6, 233–247 (2005). CAS Google Scholar
Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol.5, 126–136 (2003). CASPubMed Google Scholar
Jaulin, F., Xue, X., Rodriguez-Boulan, E. & Kreitzer, G. Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev. Cell13, 511–522 (2007). CASPubMedPubMed Central Google Scholar
Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol.155, 77–88 (2001). CASPubMedPubMed Central Google Scholar
Goldman, R. D. The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J. Cell Biol.51, 752–762 (1971). CASPubMedPubMed Central Google Scholar
Vasiliev, J. M. et al. Effect of colcemid on the locomotory behaviour of fibroblasts. J. Embryol. Exp. Morphol.24, 625–640 (1970). CASPubMed Google Scholar
Xu, J., Wang, F., Van Keymeulen, A., Rentel, M. & Bourne, H. R. Neutrophil microtubules suppress polarity and enhance directional migration. Proc. Natl Acad. Sci. USA102, 6884–6889 (2005). CASPubMedPubMed Central Google Scholar
Enomoto, T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct. Funct.21, 317–326 (1996). CASPubMed Google Scholar
Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J.18, 578–585 (1999). CASPubMedPubMed Central Google Scholar
Krendel, M., Zenke, F. T. & Bokoch, G. M. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nature Cell Biol.4, 294–301 (2002). CASPubMed Google Scholar
Kaverina, I., Krylyshkina, O. & Small, J. V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol.146, 1033–1044 (1999). CASPubMedPubMed Central Google Scholar
Kaverina, I., Rottner, K. & Small, J. V. Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol.142, 181–190 (1998). CASPubMedPubMed Central Google Scholar
Ezratty, E. J., Partridge, M. A. & Gundersen, G. G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature Cell Biol.7, 581–590 (2005). CASPubMed Google Scholar
Liao, G., Nagasaki, T. & Gundersen, G. G. Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion. J. Cell Sci.108, 3473–3483 (1995). CASPubMed Google Scholar
Wu, X. S., Tsan, G. L. & Hammer, J. A. Melanophilin and myosin Va track the microtubule plus end on EB1. J. Cell Biol.171, 201–207 (2005). CASPubMedPubMed Central Google Scholar
Pearson, C. G. & Bloom, K. Dynamic microtubules lead the way for spindle positioning. Nature Rev. Mol. Cell Biol.5, 481–492 (2004). CAS Google Scholar
Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell109, 873–885 (2002). CASPubMed Google Scholar
Eng, C. H., Huckaba, T. M. & Gundersen, G. G. The formin mDia regulates GSK3β through novel PKCs to promote microtubule stabilization but not MTOC reorientation in migrating fibroblasts. Mol. Biol. Cell17, 5004–5016 (2006). CASPubMedPubMed Central Google Scholar
Drabek, K. et al. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr. Biol.16, 2259–2264 (2006). CASPubMed Google Scholar
Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol.168, 141–153 (2005). CASPubMedPubMed Central Google Scholar
Ligon, L. A. & Holzbaur, E. L. Microtubules tethered at epithelial cell junctions by dynein facilitate efficient junction assembly. Traffic8, 808–819 (2007). CASPubMed Google Scholar
Ligon, L. A., Karki, S., Tokito, M. & Holzbaur, E. L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nature Cell Biol.3, 913–917 (2001). CASPubMed Google Scholar
Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol.149, 863–874 (2000). CASPubMedPubMed Central Google Scholar
Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science287, 2257–2259 (2000). CASPubMed Google Scholar
Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science287, 2260–2262 (2000). CASPubMed Google Scholar
Heil-Chapdelaine, R. A., Oberle, J. R. & Cooper, J. A. The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J. Cell Biol.151, 1337–1344 (2000). CASPubMedPubMed Central Google Scholar
Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell102, 695–704 (2000). CASPubMed Google Scholar
Busch, K. E., Hayles, J., Nurse, P. & Brunner, D. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell6, 831–843 (2004). CASPubMed Google Scholar
Snaith, H. A. & Sawin, K. E. Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips. Nature423, 647–651 (2003). CASPubMed Google Scholar
des Georges, A. et al. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nature Struct. Mol. Biol.15, 1102–1108 (2008). CAS Google Scholar