Breaching multiple barriers: leukocyte motility through venular walls and the interstitium (original) (raw)
Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Rev. Immunol.7, 678–689 (2007). CAS Google Scholar
Waller, A. Microscopic examination of some of the principle tissues of the animal frame, as observed in the tongue of the living frog, toad etc. Phil. Mag. J. Sci. 3rd Ser.29, 271–287 (1846). Google Scholar
Cohnheim, J. Lectures on General Pathology. (The New Sydenham Society, London, 1882). Google Scholar
Hurley, J. V. An electron microscopic study of leukocyte emigration and vascular permeability in rat skin. Aus. J. Exp. Biol. Med. Sci.41, 171–186 (1963). CAS Google Scholar
Marchesi, V. & Florey, H. W. Electron microscope observations on the emigration of leukocytes. Q. J. Exp. Physiol.45, 343–374 (1960). CASPubMed Google Scholar
Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science302, 1704–1709 (2003). CASPubMed Google Scholar
Barreiro, O., de la Fuente, H., Mittelbrunn, M. & Sanchez-Madrid, F. Functional insights on the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and immune interactions. Immunol. Rev.218, 147–164 (2007). CASPubMed Google Scholar
Cinamon, G., Shinder, V., Shamri, R. & Alon, R. Chemoattractant signals and β2 integrin occupancy at apical endothelial contacts combine with shear stress signals to promote transendothelial neutrophil migration. J. Immunol.173, 7282–7291 (2004). CASPubMed Google Scholar
Carman, C. V. & Springer, T. A. Trans-cellular migration: cell-cell contacts get intimate. Curr. Opin. Cell Biol.20, 533–540 (2008). CASPubMedPubMed Central Google Scholar
Shulman, Z. et al. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity30, 384–396 (2009). CASPubMedPubMed Central Google Scholar
Carman, C. V. Mechanisms for transcellular diapedesis: probing and pathfinding by 'invadosome-like protrusions'. J. Cell Sci.122, 3025–3035 (2009). CASPubMed Google Scholar
Sarantos, M. R. et al. Transmigration of neutrophils across inflamed endothelium is signaled through LFA-1 and Src family kinase. J. Immunol.181, 8660–8669 (2008). CASPubMed Google Scholar
Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature462, 94–98 (2009). PubMed Google Scholar
Gupton, S. L. & Gertler, F. B. Filopodia: the fingers that do the walking. Sci. STKE400, re5 (2007). Google Scholar
Phillipson, M. et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med.203, 2569–2575 (2006). CASPubMedPubMed Central Google Scholar
Alcaide, P., Auerbach, S. & Luscinskas, F. W. Neutrophil recruitment under shear flow: it's all about endothelial cell rings and gaps. Microcirculation16, 43–57 (2009). CASPubMedPubMed Central Google Scholar
Barreiro, O. et al. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol.183, 527–542 (2008). CASPubMedPubMed Central Google Scholar
Rohlena, J. et al. Endothelial CD81 is a marker of early human atherosclerotic plaques and facilitates monocyte adhesion. Cardiovasc. Res.81, 187–196 (2009). CASPubMed Google Scholar
Barreiro, O. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol.157, 1233–1245 (2002). This study introduces the formation of endothelial docking structures as an important first step, governed by endothelial signalling molecules, in promoting the firm adhesion of leukocytes. CASPubMedPubMed Central Google Scholar
Carman, C. V. & Springer, T. A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol.167, 377–388 (2004). CASPubMedPubMed Central Google Scholar
Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F. & Dvorak, A. M. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med.187, 903–915 (1998). CASPubMedPubMed Central Google Scholar
Phillipson, M., Kaur, J., Colarusso, P., Ballantyne, C. M. & Kubes, P. Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration. PLoS One3, e1649 (2008). PubMedPubMed Central Google Scholar
Mamdouh, Z., Kreitzer, G. E. & Muller, W. A. Leukocyte transmigration requires kinesin-mediated microtubule-dependent membrane trafficking from the lateral border recycling compartment. J. Exp. Med.205, 951–966 (2008). CASPubMedPubMed Central Google Scholar
Cernuda-Morollon, E. & Ridley, A. J. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ. Res.98, 757–767 (2006). CASPubMed Google Scholar
Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell129, 865–877 (2007). CASPubMed Google Scholar
Tybulewicz, V. L. Vav-family proteins in T-cell signalling. Curr. Opin. Immunol.17, 267–274 (2005). CASPubMed Google Scholar
Nishikimi, A. et al. Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science324, 384–387 (2009). CASPubMedPubMed Central Google Scholar
Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature412, 826–831 (2001). CASPubMed Google Scholar
Shulman, Z. et al. DOCK2 regulates chemokine-triggered lateral lymphocyte motility but not transendothelial migration. Blood108, 2150–2158 (2006). CASPubMed Google Scholar
Gerard, A., van der Kammen, R. A., Janssen, H., Ellenbroek, S. I. & Collard, J. G. The Rac activator Tiam1 controls efficient T-cell trafficking and route of trans-endothelial migration. Blood113, 6138–6147 (2009). CASPubMed Google Scholar
Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Rev. Mol. Cell Biol.9, 846–859 (2008). CAS Google Scholar
Weiner, O. D. et al. Spatial control of actin polymerization during neutrophil chemotaxis. Nature Cell Biol.1, 75–81 (1999). CASPubMed Google Scholar
Alblas, J., Ulfman, L., Hordijk, P. & Koenderman, L. Activation of RhoA and ROCK are essential for detachment of migrating leukocytes. Mol. Biol. Cell12, 2137–2145 (2001). CASPubMedPubMed Central Google Scholar
Worthylake, R. A. & Burridge, K. Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Curr. Opin. Cell Biol.13, 569–577 (2001). CASPubMed Google Scholar
Pertz, O., Hodgson, L., Klemke, R. L. & Hahn, K. M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature440, 1069–1072 (2006). CASPubMed Google Scholar
Gerard, A., Mertens, A. E. E., van der Kammen, R. A. & Collard, J. G. The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J. Cell Biol.176, 863–875 (2007). CASPubMedPubMed Central Google Scholar
Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol.9, 690–701 (2008). CAS Google Scholar
Gakidis, M. A. M. et al. Vav GEFs are required for β2 integrin-dependent functions of neutrophils. J. Cell Biol.166, 273–282 (2004). CASPubMedPubMed Central Google Scholar
Phillipson, M. et al. Vav1 is essential for mechanotactic crawling and migration of neutrophils out of the inflamed microvasculature. J. Immunol.182, 6870–6878 (2009). CASPubMed Google Scholar
Utomo, A. et al. Requirement for Vav proteins in post-recruitment neutrophil cytotoxicity in IgG but not complement C3-dependent injury. J. Immunol.180, 6279–6287 (2008). CASPubMed Google Scholar
Yoshida, M. et al. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton. J. Cell Biol.133, 445–455 (1996). CASPubMed Google Scholar
Tilghman, R. W. & Hoover, R. L. The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells. FASEB J.16, 1257–1259 (2002). CASPubMed Google Scholar
Kanters, E. et al. Filamin B mediates ICAM-1-driven leukocyte transendothelial migration. J. Biol. Chem.283, 31830–31839 (2008). CASPubMed Google Scholar
Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature Rev. Mol. Cell Biol.2, 138–145 (2001). CAS Google Scholar
Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biol.10, 1039–1050 (2008). CASPubMed Google Scholar
Esue, O., Tseng, Y. & Wirtz, D. α-actinin and filamin cooperatively enhance the stiffness of actin filament networks. PLoS One4, e4411 (2009). PubMedPubMed Central Google Scholar
Clayton, A. et al. Cellular activation through the ligation of intercellular adhesion molecule-1. J. Cell Sci.111, 443–453 (1998). CASPubMed Google Scholar
Hu, Y., Kiely, J. M., Szente, B. E., Rosenzweig, A. & Gimbrone, M. A., Jr. E-selectin-dependent signaling via the mitogen-activated protein kinase pathway in vascular endothelial cells. J. Immunol.165, 2142–2148 (2000). CASPubMed Google Scholar
van Wetering, S. et al. VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. Am. J. Physiol. Cell Physiol.285, C343–C352 (2003). CASPubMed Google Scholar
van Buul, J. D. et al. RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J. Cell Biol.178, 1279–1293 (2007). CASPubMedPubMed Central Google Scholar
Adamson, P., Etienne, S., Couraud, P. O., Calder, V. & Greenwood, J. Lymphocyte migration through brain endothelial cell monolayers involves signalling through endothelial ICAM-1 via a Rho-dependent pathway. J. Immunol.162, 2964–2973 (1999). CASPubMed Google Scholar
Durieu-Trautmann, O., Chaverot, N., Cazaubon, S., Strosberg, A. D. & Couraud, P. O. Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J. Biol. Chem.269, 12536–12540 (1994). CASPubMed Google Scholar
Matheny, H. E., Deem, T. L. & Cook-Mills, J. M. Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. J. Immunol.164, 6550–6559 (2000). CASPubMed Google Scholar
van Buul, J. D., Anthony, E. C., Fernandez-Borja, M., Burridge, K. & Hordijk, P. L. Proline-rich tyrosine kinase 2 (Pyk2) mediates vascular endothelial-cadherin-based cell-cell adhesion by regulating β-catenin tyrosine phosphorylation. J. Biol. Chem.280, 21129–21136 (2005). CASPubMed Google Scholar
Deem, T. L., Abdala-Valencia, H. & Cook-Mills, J. M. VCAM-1 activation of endothelial cell protein tyrosine phosphatase 1B. J. Immunol.178, 3865–3873 (2007). CASPubMed Google Scholar
Allingham, M. J., van Buul, J. D. & Burridge, K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J. Immunol.179, 4053–4064 (2007). CASPubMed Google Scholar
Martinelli, R. et al. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol. Biol. Cell20, 995–1005 (2009). CASPubMedPubMed Central Google Scholar
Wojciak-Stothard, B., Williams, L. & Ridley, A. J. Monocyte adhesion and spreading on human endothelial cells is dependent on Rho-regulated receptor clustering. J. Cell Biol.145, 1293–1307 (1999). In this paper, the relevance of endothelial RhoGTPases in the clustering and adhesive function of integrin ligands such as ICAM1 is described, underscoring the importance of the link between the endothelial actin cytoskeleton and leukocyte adhesion molecules. CASPubMedPubMed Central Google Scholar
Etienne, S. et al. ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J. Immunol.161, 5755–5761 (1998). CASPubMed Google Scholar
Yang, L. et al. Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodeling during polymorphonuclear leukocyte adhesion and transmigration. J. Immunol.177, 6440–6449 (2006). CASPubMed Google Scholar
Javaid, K. et al. Tumor necrosis factor-α induces early-onset endothelial adhesivity by protein kinase Cζ-dependent activation of intercellular adhesion molecule-1. Circ. Res.92, 1089–1097 (2003). CASPubMed Google Scholar
Bouzin, C., Brouet, A., De Vriese, J., DeWever, J. & Feron, O. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol.178, 1505–1511 (2007). CASPubMed Google Scholar
Liu, L. et al. LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration. J. Exp. Med.201, 409–418 (2005). CASPubMedPubMed Central Google Scholar
Nourshargh, S., Krombach, F. & Dejana, E. The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. J. Leukoc. Biol.80, 714–718 (2006). CASPubMed Google Scholar
Woodfin, A., Voisin, M. B. & Nourshargh, S. Recent developments and complexities in neutrophil transmigration. Curr. Opin. Hematol.17, 9–17 (2010). PubMedPubMed Central Google Scholar
Woodfin, A. et al. Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A and PECAM-1. Blood113, 6246–6257 (2009). CASPubMedPubMed Central Google Scholar
Wegmann, F. et al. ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability. J. Exp. Med.203, 1671–1677 (2006). CASPubMedPubMed Central Google Scholar
Bradfield, P. F. et al. JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood110, 2545–2555 (2007). CASPubMedPubMed Central Google Scholar
Mamdouh, Z., Mikhailov, A. & Muller, W. A. Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J. Exp. Med.206, 2795–2808 (2009). CASPubMedPubMed Central Google Scholar
Nottebaum, A. F. et al. VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J. Exp. Med.205, 2929–2945 (2008). This paper shows that neutrophil adhesion negatively regulates the interaction between VE-PTP and VE-cadherin, allowing Tyr phosphorylation of VE-cadherin and associated proteins and thereby weakening cell–cell contacts. CASPubMedPubMed Central Google Scholar
Feng, D., Nagy, J. A., Dvorak, H. F. & Dvorak, A. M. Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Microsc. Res. Tech.57, 289–326 (2002). CASPubMed Google Scholar
Xiao, K. et al. p120-catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol. Biol. Cell16, 5141–5151 (2005). CASPubMedPubMed Central Google Scholar
Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biol.8, 1223–1234 (2006). CASPubMed Google Scholar
Dasgupta, B. & Muller, W. A. Endothelial Src kinase regulates membrane recycling from the lateral border recycling compartment during leukocyte transendothelial migration. Eur. J. Immunol.38, 3499–3507 (2008). CASPubMedPubMed Central Google Scholar
Dasgupta, B., Dufour, E., Mamdouh, Z. & Muller, W. A. A novel and critical role for tyrosine 663 in platelet endothelial cell adhesion molecule-1 trafficking and transendothelial migration. J. Immunol.182, 5041–5051 (2009). CASPubMed Google Scholar
Scheiermann, C. et al. Junctional adhesion molecule (JAM)-C mediates leukocyte infiltration in response to ischemia reperfusion injury. Arterioscler. Thromb. Vasc. Biol.29, 1509–1515 (2009). CASPubMedPubMed Central Google Scholar
Woodfin, A. et al. JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood110, 1848–1856 (2007). CASPubMed Google Scholar
Nourshargh, S. & Marelli-Berg, F. M. Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol.26, 157–165 (2005). CASPubMed Google Scholar
Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol.18, 560–574 (2008). An excellent review highlighting the current controversies associated with cell migration through basement membranes, proposing new mechanisms that may mediate leukocyte emigration through this barrier. CASPubMed Google Scholar
Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating PMN. J. Exp. Med.203, 1519–1532 (2006). The first study to show that neutrophils migrate through permissive regions in the vascular basement membrane that express low levels of certain basement membrane constituents. CASPubMedPubMed Central Google Scholar
Voisin, M.-B., Proebstl, D. & Nourshargh, S. Venular basement membranes ubiquitously express matrix protein low expression regions: characterisation in multiple tissues and remodelling during inflammation. Am. J. Pathol.176, 482–495 (2010). CASPubMedPubMed Central Google Scholar
Voisin, M. B., Woodfin, A. & Nourshargh, S. Monocytes and neutrophils exhibit both distinct and common mechanisms in penetrating the vascular basement membrane in vivo. Arterioscler. Thromb. Vasc. Biol.29, 1193–1199 (2009). This study provides clearin vivoevidence for the ability of neutrophils and monocytes to extend membrane protrusions through permissive sites in the venular basement membrane during transmigration. CASPubMedPubMed Central Google Scholar
Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J. & Davis, G. E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood114, 5091–5101 (2009). CASPubMedPubMed Central Google Scholar
Yadav, R., Larbi, K. Y., Young, R. E. & Nourshargh, S. Migration of leukocytes through the vessel wall and beyond. Thromb. Haemost.90, 598–606 (2003). CASPubMed Google Scholar
Reichel, C. A. et al. Gelatinases mediate neutrophil recruitment in vivo: evidence for stimulus specificity and a critical role in collagen IV remodeling. J. Leukoc. Biol.83, 864–874 (2008). CASPubMed Google Scholar
Deem, T. L. & Cook-Mills, J. M. Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood104, 2385–2393 (2004). CASPubMed Google Scholar
Steadman, R. et al. Laminin cleavage by activated human neutrophils yields proteolytic fragments with selective migratory properties. J. Leukoc. Biol.53, 354–365 (1993). CASPubMed Google Scholar
Mydel, P. et al. Neutrophil elastase cleaves laminin-332 (laminin-5) generating peptides that are chemotactic for neutrophils. J. Biol. Chem.283, 9513–9522 (2008). CASPubMedPubMed Central Google Scholar
Tooley, A. J. et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nature Cell Biol.11, 17–26 (2009). CASPubMed Google Scholar
Hallmann, R. et al. Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev.85, 979–1000 (2005). CASPubMed Google Scholar
de Bruyn, P. P. H. The amoeboid movement of the mammalian leukocyte in tissue culture. Anat. Rec.95, 117–192 (1946). Google Scholar
Benvenuti, F. et al. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science305, 1150–1153 (2004). CASPubMed Google Scholar
Sun, C. X. et al. Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood104, 3758–3765 (2004). CASPubMed Google Scholar
Wheeler, A. P. et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J. Cell Sci.119, 2749–2757 (2006). CASPubMed Google Scholar
Sivalenka, R. R. & Jessberger, R. SWAP-70 regulates c-kit-induced mast cell activation, cell-cell adhesion, and migration. Mol. Cell. Biol.24, 10277–10288 (2004). CASPubMedPubMed Central Google Scholar
Graham, D. B. et al. ITAM signaling by Vav family Rho guanine nucleotide exchange factors regulates interstitial transit rates of neutrophils in vivo. PLoS One4, e4652 (2009). PubMedPubMed Central Google Scholar
Nombela-Arrieta, C. et al. A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J. Exp. Med.204, 497–510 (2007). CASPubMedPubMed Central Google Scholar
Snapper, S. B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol.77, 993–998 (2005). CASPubMed Google Scholar
Park, H. et al. A point mutation in the murine Hem1 gene reveals an essential role for hematopoietic protein 1 in lymphopoiesis and innate immunity. J. Exp. Med.205, 2899–2913 (2008). This study identifies HEM1 as a component that is essential for the stability of the WAVE complex in lymphocytes and shows that on its deletion motility in lymphocytes is completely paralyzed. CASPubMedPubMed Central Google Scholar
Butler, B., Kastendieck, D. H. & Cooper, J. A. Differently phosphorylated forms of the cortactin homolog HS1 mediate distinct functions in natural killer cells. Nature Immunol.9, 887–897 (2008). CAS Google Scholar
Foger, N., Rangell, L., Danilenko, D. M. & Chan, A. C. Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science313, 839–842 (2006). PubMed Google Scholar
Shiow, L. R. et al. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nature Immunol.9, 1307–1315 (2008). CAS Google Scholar
Smith, A., Bracke, M., Leitinger, B., Porter, J. C. & Hogg, N. LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci.116, 3123–3133 (2003). CASPubMed Google Scholar
Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature453, 51–55 (2008). This paper provides conclusivein vivoevidence that integrins are dispensable for the movement of leukocytes in the interstitial tissue. PubMed Google Scholar
Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell114, 201–214 (2003). CASPubMed Google Scholar
Redd, M. J., Kelly, G., Dunn, G., Way, M. & Martin, P. Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil. Cytoskeleton63, 415–422 (2006). CASPubMed Google Scholar
Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol.154, 147–160 (2001). CASPubMedPubMed Central Google Scholar
Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nature Immunol.8, 1076–1085 (2007). CAS Google Scholar
Grigorova, I. L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nature Immunol.10, 58–65 (2009). CAS Google Scholar
Bray, D. & White, J. G. Cortical flow in animal cells. Science239, 883–888 (1988). CASPubMed Google Scholar
Malawista, S. E. & de Boisfleury Chevance, A. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations. Proc. Natl Acad. Sci. USA94, 11577–11582 (1997). CASPubMedPubMed Central Google Scholar
Renkawitz, J. et al. Adaptive force transmission in amoeboid cell migration. Nature Cell Biol.11, 1438–1443 (2009). Google Scholar
Werr, J., Xie, X., Hedqvist, P., Ruoslahti, E. & Lindbom, L. β1 integrins are critically involved in neutrophil locomotion in extravascular tissue in vivo. J. Exp. Med.187, 2091–2096 (1998). CASPubMedPubMed Central Google Scholar
Friedl, P., Entschladen, F., Conrad, C., Niggemann, B. & Zanker, K. S. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize β1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur. J. Immunol.28, 2331–2343 (1998). Thisin vitrostudy preceded the findings in reference 106 by showing that in 3D environments lymphocyte migration can occur in an integrin-independent manner. CASPubMed Google Scholar
Hawkins, R. J. et al. Pushing off the walls: a mechanism of cell motility in confinement. Phys. Rev. Lett.102, 58103–58104 (2009). CAS Google Scholar
Stanley, P. et al. Intermediate-affinity LFA-1 binds α-actinin-1 to control migration at the leading edge of the T cell. EMBO J.27, 62–75 (2008). CASPubMed Google Scholar
Imai, Y. et al. Genetic perturbation of the putative cytoplasmic membrane-proximal salt bridge aberrantly activates α4 integrins. Blood112, 5007–5015 (2008). CASPubMedPubMed Central Google Scholar
Semmrich, M. et al. Importance of integrin LFA-1 deactivation for the generation of immune responses. J. Exp. Med.201, 1987–1998 (2005). CASPubMedPubMed Central Google Scholar
Mackay, C. R. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nature Immunol.9, 988–998 (2008). CAS Google Scholar
Friedl, P. & Weigelin, B. Interstitial leukocyte migration and immune function. Nature Immunol.9, 960–969 (2008). CAS Google Scholar
Chen, Y. et al. Asymptomatic reactivation of JC virus in patients treated with Natalizumab. N. Engl. J. Med.361, 1067–1074 (2009). CASPubMedPubMed Central Google Scholar
Greenwood, J. & Mason, J. C. Statins and the vascular endothelial inflammatory response. Trends Immunol.28, 88–98 (2007). CASPubMed Google Scholar
Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol.133, 1403–1415 (1996). CASPubMed Google Scholar
Hirschi, K. K. & D'Amore, P. A. Pericytes in the microvasculature. Cardiovasc. Res.32, 687–698 (1996). CASPubMed Google Scholar
Wu, C. et al. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nature Med.15, 519–527 (2009). CASPubMed Google Scholar
Wondimu, Z. et al. An endothelial laminin isoform, laminin 8 α4β1γ1, is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis. Blood104, 1859–1866 (2004). CASPubMed Google Scholar
Gorfu, G. et al. Laminin isoforms of lymph nodes and predominant role of α5-laminin(s) in adhesion and migration of blood lymphocytes. J. Leukoc. Biol.84, 701–712 (2008). CASPubMed Google Scholar
Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity25, 867–869 (2006). Google Scholar
Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S. & Amigorena, S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med.204, 345–356 (2007). CASPubMedPubMed Central Google Scholar
Wilson, E. H. et al. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity30, 300–311 (2009). CASPubMedPubMed Central Google Scholar