The nuclear envelope in genome organization, expression and stability (original) (raw)
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389, 251–260 (1997). ArticleCASPubMed Google Scholar
Towbin, B. D., Meister, P. & Gasser, S. M. The nuclear envelope — a scaffold for silencing? Curr. Opin. Genet. Dev.19, 180–186 (2009). ArticleCASPubMed Google Scholar
Mekhail, K., Seebacher, J., Gygi, S. P. & Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature456, 667–670 (2008). Yeast rDNA repeats are stabilized by perinuclear membrane tethers. ArticleCASPubMedPubMed Central Google Scholar
Ottaviani, A. et al. Identification of a perinuclear positioning element in human subtelomeres that requires A-type lamins and CTCF. EMBO J.28, 2428–2436 (2009). A-type lamins recruit subtelomeric regions to the nuclear periphery in human cells. ArticleCASPubMedPubMed Central Google Scholar
Gonzalez-Suarez, I. et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J.28, 2414–2427 (2009). ArticleCASPubMedPubMed Central Google Scholar
Funabiki, H., Hagan, I., Uzawa, S. & Yanagida, M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol.121, 961–976 (1993). ArticleCASPubMed Google Scholar
Agard, D. A. & Sedat, J. W. Three-dimensional architecture of a polytene nucleus. Nature302, 676–681 (1983). ArticleCASPubMed Google Scholar
Hochstrasser, M., Mathog, D., Gruenbaum, Y., Saumweber, H. & Sedat, J. W. Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J. Cell Biol.102, 112–123 (1986). ArticleCASPubMed Google Scholar
King, M. C., Drivas, T. G. & Blobel, G. A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell134, 427–438 (2008). Cooperation between SUN–KASH domain interactions and silent chromatin at centromeres in the buffering of subcellular forces and the maintenance of nuclear integrity in yeast. Google Scholar
Capell, B. C. & Collins, F. S. Human laminopathies: nuclei gone genetically awry. Nature Rev. Genet.7, 940–952 (2006). ArticleCASPubMed Google Scholar
Schirmer, E. C., Florens, L., Guan, T., Yates, J. R., 3rd & Gerace, L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science301, 1380–1382 (2003). ArticleCASPubMed Google Scholar
Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell140, 360–371 (2010). ArticleCASPubMed Google Scholar
Capelson, M. et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell140, 372–383 (2010). References 17 and 18 show that, inD. melanogaster, nucleoplasmic NPC components interact with active loci and perinuclear NPCs interact with a smaller group of silent genes. ArticleCASPubMedPubMed Central Google Scholar
Vaquerizas, J. M. et al. Nuclear pore proteins Nup153 and Megator define transcriptionally active regions in the Drosophila genome. PLoS Genet.6, e1000846 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genet.38, 1005–1014 (2006). ArticleCASPubMed Google Scholar
Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature453, 948–951 (2008). ArticleCASPubMed Google Scholar
Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science322, 597–602 (2008). A locus with persistent damage relocates to NPCs at the nuclear periphery. ArticleCASPubMedPubMed Central Google Scholar
Oza, P., Jaspersen, S. L., Miele, A., Dekker, J. & Peterson, C. L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev.23, 912–927 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev.23, 928–938 (2009). A SUN domain protein and telomerase cooperate to maintain yeast telomere stability. ArticleCASPubMedPubMed Central Google Scholar
Gartenberg, M. R. Life on the edge: telomeres and persistent DNA breaks converge at the nuclear periphery. Genes Dev.23, 1027–1031 (2009). ArticleCASPubMedPubMed Central Google Scholar
Therizols, P. et al. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol.172, 189–199 (2006). DSBs require NPC components for repair by NHEJ in yeast. ArticleCASPubMedPubMed Central Google Scholar
Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biol.11, 980–987 (2009). ArticleCASPubMed Google Scholar
Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol.145, 1119–1131 (1999). Introduction of the concept of radial locus positioning and association of gene-light chromosomes with the nuclear periphery. ArticleCASPubMedPubMed Central Google Scholar
van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nature Biotechnol.18, 424–428 (2000). ArticleCAS Google Scholar
Palladino, F. et al. Sir3 and Sir4 proteins are required for the positioning and integrity of yeast telomeres. Cell75, 543–555 (1993). ArticleCASPubMed Google Scholar
Csink, A. K. & Henikoff, S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature381, 529–531 (1996). ArticleCASPubMed Google Scholar
Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature394, 592–595 (1998). An early study linking perinuclear localization to silent chromatin in yeast. ArticleCASPubMed Google Scholar
Reddy, K. L., Zullo, J. M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature452, 243–247 (2008). INM protein-dependent localization of genes to the nuclear envelope promotes heterochromatin-dependent transcriptional silencing in metazoans. ArticleCASPubMed Google Scholar
Finlan, L. E. et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet.4, e1000039 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Grund, S. E. et al. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J. Cell Biol.182, 897–910 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bupp, J. M., Martin, A. E., Stensrud, E. S. & Jaspersen, S. L. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J. Cell Biol.179, 845–854 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gartenberg, M. R., Neumann, F. R., Laroche, T., Blaszczyk, M. & Gasser, S. M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell119, 955–967 (2004). A gene excised from its genomic location at the nuclear periphery remains silenced owing to the maintenance of silencing protein interactions at the wandering locus. ArticleCASPubMed Google Scholar
Ansari, A. & Gartenberg, M. R. Persistence of an alternate chromatin structure at silenced loci in vitro. Proc. Natl Acad. Sci. USA96, 343–348 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kumaran, R. I. & Spector, D. L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol.180, 51–65 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shevelyov, Y. Y. et al. The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc. Natl Acad. Sci. USA106, 3282–3287 (2009). ArticleCASPubMedPubMed Central Google Scholar
Casolari, J. M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell117, 427–439 (2004). ArticleCASPubMed Google Scholar
Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature441, 774–778 (2006). ArticleCASPubMed Google Scholar
Cabal, G. G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature441, 770–773 (2006). ArticleCASPubMed Google Scholar
Dieppois, G., Iglesias, N. & Stutz, F. Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol. Cell. Biol.26, 7858–7870 (2006). ArticleCASPubMedPubMed Central Google Scholar
Akhtar, A. & Gasser, S. M. The nuclear envelope and transcriptional control. Nature Rev. Genet.8, 507–517 (2007). ArticleCASPubMed Google Scholar
Ahmed, S. et al. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nature Cell Biol.12, 111–118 (2010). Ancient DNA zip codes target active genes to the nuclear periphery inS. cerevisiaeandS. pombe . ArticleCASPubMed Google Scholar
Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nature Cell Biol.6, 1114–1121 (2004). ArticleCASPubMed Google Scholar
Brown, C. R., Kennedy, C. J., Delmar, V. A., Forbes, D. J. & Silver, P. A. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev.22, 627–639 (2008). ArticleCASPubMedPubMed Central Google Scholar
Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev.10, 1796–1811 (1996). ArticleCASPubMed Google Scholar
Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science320, 1332–1336 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gasser, S. M., Hediger, F., Taddei, A., Neumann, F. R. & Gartenberg, M. R. The function of telomere clustering in yeast: the circe effect. Cold Spring Harb. Symp. Quant. Biol.69, 327–337 (2004). ArticleCASPubMed Google Scholar
Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell109, 551–562 (2002). ArticleCASPubMed Google Scholar
Pai, C. Y. & Corces, V. G. The nuclear pore complex and chromatin boundaries. Trends Cell Biol.12, 452–455 (2002). ArticleCASPubMed Google Scholar
Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell33, 335–343 (2009). ArticleCASPubMed Google Scholar
Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nature Rev. Mol. Cell Biol.7, 739–750 (2006). ArticleCAS Google Scholar
Franco, S., Alt, F. W. & Manis, J. P. Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst)5, 1030–1041 (2006). ArticleCAS Google Scholar
Nomura, M. Ribosomal RNA genes, RNA polymerases, nucleolar structures, and synthesis of rRNA in the yeast Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol.66, 555–565 (2001). ArticleCASPubMed Google Scholar
Keil, R. L. & Roeder, G. S. _Cis_-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell39, 377–386 (1984). ArticleCASPubMed Google Scholar
Brewer, B. J. & Fangman, W. L. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell55, 637–643 (1988). ArticleCASPubMed Google Scholar
Kobayashi, T. & Horiuchi, T. A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells1, 465–474 (1996). ArticleCASPubMed Google Scholar
Straight, A. F. et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell97, 245–256 (1999). ArticleCASPubMed Google Scholar
Visintin, R., Hwang, E. S. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature398, 818–823 (1999). ArticleCASPubMed Google Scholar
Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell97, 233–244 (1999). ArticleCASPubMed Google Scholar
Huang, J. & Moazed, D. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev.17, 2162–2176 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rabitsch, K. P. et al. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev. Cell4, 535–548 (2003). ArticleCASPubMed Google Scholar
Huang, J. et al. Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev.20, 2887–2901 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev.11, 255–269 (1997). ArticleCASPubMed Google Scholar
Smith, J. S. & Boeke, J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev.11, 241–254 (1997). ArticleCASPubMed Google Scholar
Gottlieb, S. & Esposito, R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell56, 771–776 (1989). ArticleCASPubMed Google Scholar
Fritze, C. E., Verschueren, K., Strich, R. & Easton Esposito, R. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J.16, 6495–6509 (1997). ArticleCASPubMedPubMed Central Google Scholar
Smith, J. S., Caputo, E. & Boeke, J. D. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol. Cell. Biol.19, 3184–3197 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hellemans, J. et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nature Genet.36, 1213–1218 (2004). ArticleCASPubMed Google Scholar
Brachner, A., Reipert, S., Foisner, R. & Gotzmann, J. LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J. Cell Sci.118, 5797–5810 (2005). ArticleCASPubMed Google Scholar
Rodriguez-Navarro, S., Igual, J. C. & Perez-Ortin, J. E. SRC1: an intron-containing yeast gene involved in sister chromatid segregation. Yeast19, 43–54 (2002). ArticleCASPubMed Google Scholar
Bione, S. et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nature Genet.8, 323–327 (1994). ArticleCASPubMed Google Scholar
Torres-Rosell, J. et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biol.9, 923–931 (2007). ArticleCASPubMed Google Scholar
Liu, J. et al. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA100, 4598–4603 (2003). ArticleCASPubMedPubMed Central Google Scholar
Blasco, M. A. The epigenetic regulation of mammalian telomeres. Nature Rev. Genet.8, 299–309 (2007). ArticleCASPubMed Google Scholar
Taddei, A. & Gasser, S. M. Repairing subtelomeric DSBs at the nuclear periphery. Trends Cell Biol.16, 225–228 (2006). ArticleCASPubMed Google Scholar
Antoniacci, L. M., Kenna, M. A. & Skibbens, R. V. The nuclear envelope and spindle pole body-associated Mps3 protein bind telomere regulators and function in telomere clustering. Cell Cycle6, 75–79 (2007). ArticleCASPubMed Google Scholar
Andrulis, E. D. et al. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol. Cell. Biol.22, 8292–8301 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol.12, 2076–2089 (2002). ArticleCASPubMed Google Scholar
Taddei, A., Hediger, F., Neumann, F. R., Bauer, C. & Gasser, S. M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J.23, 1301–1312 (2004). ArticleCASPubMedPubMed Central Google Scholar
Taddei, A. et al. The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res.19, 611–625 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lingner, J., Cooper, J. P. & Cech, T. R. Telomerase and DNA end replication: no longer a lagging strand problem? Science269, 1533–1534 (1995). ArticleCASPubMed Google Scholar
Hediger, F., Berthiau, A. S., van Houwe, G., Gilson, E. & Gasser, S. M. Subtelomeric factors antagonize telomere anchoring and Tel1-independent telomere length regulation. EMBO J.25, 857–867 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, T. & Ganley, A. R. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science309, 1581–1584 (2005). ArticleCASPubMed Google Scholar
Muntoni, A. & Reddel, R. R. The first molecular details of ALT in human tumor cells. Hum. Mol. Genet.14, R191–R196 (2005). ArticleCASPubMed Google Scholar
Chikashige, Y. et al. Meiotic proteins Bqt1 and Bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell125, 59–69 (2006). ArticleCASPubMed Google Scholar
Tang, X., Jin, Y. & Cande, W. Z. Bqt2p is essential for initiating telomere clustering upon pheromone sensing in fission yeast. J. Cell Biol.173, 845–851 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chikashige, Y. et al. Membrane proteins Bqt3 and -4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation. J. Cell Biol.187, 413–427 (2009). ArticleCASPubMedPubMed Central Google Scholar
Koszul, R., Kim, K. P., Prentiss, M., Kleckner, N. & Kameoka, S. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell133, 1188–1201 (2008). ArticleCASPubMedPubMed Central Google Scholar
Penkner, A. M. et al. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell139, 920–933 (2009). ArticleCASPubMed Google Scholar
Sato, A. et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell139, 907–919 (2009). ArticleCASPubMedPubMed Central Google Scholar
Conrad, M. N., Lee, C. Y., Wilkerson, J. L. & Dresser, M. E. MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA104, 8863–8868 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ding, X. et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell12, 863–872 (2007). ArticleCASPubMed Google Scholar
Schmitt, J. et al. Transmembrane protein SUN2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. Proc. Natl Acad. Sci. USA104, 7426–7431 (2007). ArticleCASPubMedPubMed Central Google Scholar
Penkner, A. et al. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans meiosis. Dev. Cell12, 873–885 (2007). ArticleCASPubMed Google Scholar
Conrad, M. N. et al. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell133, 1175–1187 (2008). ArticleCASPubMed Google Scholar
Feuerbach, F. et al. Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast. Nature Cell Biol.4, 214–221 (2002). ArticleCASPubMed Google Scholar
Hediger, F., Dubrana, K. & Gasser, S. M. Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. J. Struct. Biol.140, 79–91 (2002). ArticleCASPubMed Google Scholar
Galy, V. et al. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature403, 108–112 (2000). ArticleCASPubMed Google Scholar
Andres, V. & Gonzalez, J. M. Role of A-type lamins in signaling, transcription, and chromatin organization. J. Cell Biol.187, 945–957 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bennett, C. B. et al. Genes required for ionizing radiation resistance in yeast. Nature Genet.29, 426–434 (2001). ArticleCASPubMed Google Scholar
Loeillet, S. et al. Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA Repair (Amst)4, 459–468 (2005). ArticleCAS Google Scholar
Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell124, 1069–1081 (2006). ArticleCASPubMed Google Scholar
Palancade, B. et al. Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. Mol. Biol. Cell18, 2912–2923 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol.167, 605–611 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol.16, 825–831 (2006). ArticleCASPubMed Google Scholar
Dundr, M. et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol.179, 1095–1103 (2007). References 112 and 113 show evidence for actin–myosin-guided movement of DNA loci. ArticleCASPubMedPubMed Central Google Scholar
Holaska, J. M., Kowalski, A. K. & Wilson, K. L. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol.2, E231 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Sexton, T., Schober, H., Fraser, P. & Gasser, S. M. Gene regulation through nuclear organization. Nature Struct. Mol. Biol.14, 1049–1055 (2007). ArticleCAS Google Scholar