How death shapes life during development (original) (raw)
Glücksmann, A. Cell deaths in normal vertebrate ontogeny. Biol. Rev.29, 59–86 (1951).First recognition that cell death is a normal component of animal development. Google Scholar
Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer26, 239–257 (1972). CASPubMedPubMed Central Google Scholar
Schweichel, J.-U. & Merker, H.-J. The morphology of various types of cell death in prenatal tissues. Teratology7, 253–266 (1973).Definition of the morphological types of cell death that occur during animal development based on the role and location of the lysosome. CASPubMed Google Scholar
Clarke, P. G. H. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol.181, 195–213 (1990). CAS Google Scholar
Hengartner, M. O. The biochemistry of apoptosis. Nature407, 770–776 (2000). CASPubMed Google Scholar
Lockshin, R. A. & Williams, C. M. Programmed cell death. I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J. Insect Physiol.11, 123–133 (1965). CASPubMed Google Scholar
Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell9, 459–470 (2002). CASPubMed Google Scholar
Lee, C.-Y. & Baehrecke, E. H. Steroid regulation of autophagic programmed cell death during development. Development128, 1443–1455 (2001).This study reports that apoptotic and autophagic cell death have some similar mechanisms. CASPubMed Google Scholar
Krammer, P. H. CD95's deadly mission in the immune system. Nature407, 789–795 (2000). CASPubMed Google Scholar
Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science267, 1456–1462 (1995). CASPubMed Google Scholar
Yuan, J. & Yanker, B. A. Apoptosis in the nervous system. Nature407, 802–809 (2000). CASPubMed Google Scholar
Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature335, 440–442 (1988). CASPubMed Google Scholar
Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature409, 207–211 (2001). CASPubMed Google Scholar
Stassi, G. & De Maria, R. Autoimmune thyroid disease: new models of cell death in autoimmunity. Nature Rev. Immunol.2, 195–204 (2002). CAS Google Scholar
Aravind, L., Dixit, V. M. & Koonin, E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science291, 1279–1284 (2001). CASPubMed Google Scholar
Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell88, 347–354 (1997). CASPubMed Google Scholar
Meier, P., Finch, A. & Evan, G. Apoptosis in development. Nature407, 796–801 (2000). CASPubMed Google Scholar
Vaux, D. L. & Korsmeyer, S. J. Cell death in development. Cell96, 245–254 (1999). CASPubMed Google Scholar
Saunders, J. W. Death in embryonic systems. Science154, 604–612 (1966). PubMed Google Scholar
Zakeri, Z., Quaglino, D. & Ahuja, H. S. Apoptotic cell death in the mouse limb and its suppression in the hammertoe mutant. Dev. Biol.165, 294–297 (1994). CASPubMed Google Scholar
Farbman, A. I. Electron microscope study of palate fusion in mouse embryos. Dev. Biol.18, 93–116 (1968). CASPubMed Google Scholar
Smiley, G. R. & Dixon, A. D. Fine structure of midline epithelium in the developing palate of the mouse. Anat. Rec.161, 293–310 (1968). CASPubMed Google Scholar
Chautan, M. et al. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol.9, 967–970 (1999). CASPubMed Google Scholar
Shi, Y.-B. & Ishizuya-Oka, A. Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Curr. Top. Dev. Biol.32, 205–235 (1996). CASPubMed Google Scholar
Baehrecke, E. H. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ.7, 1057–1062 (2000). CASPubMed Google Scholar
Kratochwil, K. & Schwartz, P. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. Proc. Natl Acad. Sci. USA73, 4041–4044 (1976). CASPubMedPubMed Central Google Scholar
Barres, B. A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell70, 31–46 (1992). CASPubMed Google Scholar
Klämbt, C., Jacobs, J. R. & Goodman, C. S. The midline of the Drosophila central nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell64, 801–815 (1991). PubMed Google Scholar
Watanabe, M., Jafri, A. & Fisher, S. A. Apoptosis is required for the proper formation of the ventriculo-arterial connections. Dev. Biol.240, 274–288 (2001). CASPubMed Google Scholar
Chu-Wang, I. W. & Oppenheim, R. W. Cell death of motoneurons in the chick embryo spinal cord. I. A light and electron microscopic study of naturally occurring and induced cell loss during development. J. Comp. Neurol.177, 33–57 (1978). CASPubMed Google Scholar
Schwartz, L. M., Smith, S. W., Jones, M. E. E. & Osborne, B. A. Do all programmed cell deaths occur via apoptosis? Proc. Natl Acad. Sci. USA90, 980–984 (1993).This study identified molecular differences between apoptotic and autophagic cells. CASPubMedPubMed Central Google Scholar
Jiang, C., Baehrecke, E. H. & Thummel, C. S. Steroid regulated programmed cell death during Drosophila metamorphosis. Development124, 4673–4683 (1997). CASPubMed Google Scholar
Jochova, J., Zakeri, Z. & Lockshin, R. A. Rearrangement of the tubulin and actin cytoskeleton during programmed cell death in Drosophila salivary glands. Cell Death Differ.4, 140–149 (1997). CASPubMed Google Scholar
Jesenberger, V. & Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nature Rev. Mol. Cell Biol.3, 112–121 (2002). CAS Google Scholar
Yang, Y. et al. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science288, 874–877 (2000). CASPubMed Google Scholar
Hays, R., Wickline, L. & Cagan, R. Morgue mediates apoptosis in the Drosophila retina by promoting degradation of DIAP1. Nature Cell Biol.4, 425–431 (2002). CASPubMed Google Scholar
Ryoo, H. D. et al. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biol.4, 432–438 (2002). CASPubMed Google Scholar
Ellis, R. E., Yuan, J. & Horvitz, R. H. Mechanisms and functions of cell death. Annu. Rev. Cell Biol.7, 663–698 (1991). CASPubMed Google Scholar
Lee, C.-Y. et al. E93 directs steroid-triggered programmed cell death in Drosophila. Mol. Cell6, 433–443 (2000). CASPubMed Google Scholar
Jiang, C., Lamblin, A.-F. J., Steller, H. & Thummel, C. S. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell5, 445–455 (2000). CASPubMed Google Scholar
Paglin, S. et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res.61, 439–444 (2001). CASPubMed Google Scholar
Leist, M. & Jäätelä, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nature Rev. Mol. Cell Biol.2, 589–598 (2001). CAS Google Scholar
Conradt, B. & Horvitz, H. R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell98, 317–327 (1999). CASPubMed Google Scholar
Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell93, 519–529 (1998). CASPubMed Google Scholar
Adams, J. M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science281, 1322–1326 (1998). CASPubMed Google Scholar
Hamburger, V. & Levi-Montalcini, R. Proliferation, differentiation, and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool.111, 457–502 (1949). CASPubMed Google Scholar
Raff, M. C. et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science262, 695–700 (1993). CASPubMed Google Scholar
Bergmann, A., Tugentman, M., Shilo, B. Z. & Steller, H. Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev. Cell2, 159–170 (2002). CASPubMed Google Scholar
Wang, S. L. et al. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell98, 453–463 (1999). CASPubMed Google Scholar
Goyal, L. et al. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J.19, 589–597 (2000). CASPubMedPubMed Central Google Scholar
Salvesen, G. S. & Duckett, C. S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol.3, 401–410 (2002). CAS Google Scholar
Christich, A. et al. Damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Curr. Biol.12, 137–140 (2002). CASPubMed Google Scholar
Srinivasula, S. M. et al. sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP-inhibitory protein. Curr. Biol.12, 125–130 (2002). CASPubMedPubMed Central Google Scholar
Wing, J. P. et al. Drosophila sickle is a novel grim-reaper cell death activator. Curr. Biol.12, 131–135 (2002). CASPubMed Google Scholar
Verhagen, A. M. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem.277, 445–454 (2002). CASPubMed Google Scholar
Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J. Biol. Chem.277, 432–438 (2002). CASPubMed Google Scholar
Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem.277, 439–444 (2002). CASPubMed Google Scholar
Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics154, 669–678 (2000). CASPubMedPubMed Central Google Scholar
Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell8, 613–621 (2001). CASPubMed Google Scholar
Isaacs, J. T. Antagonistic effect of androgen on prostatic cell death. Prostate5, 547–557 (1984). Google Scholar
Robinow, S., Talbot, W. S., Hogness, D. S. & Truman, J. W. Programmed cell death in the Drosophila CNS is ecdysone-regulated and coupled with a specific ecdysone receptor isoform. Development119, 1251–1259 (1993). CASPubMed Google Scholar
Thomas, H. E., Stunnenberg, H. G. & Stewart, A. F. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature362, 471–475 (1993). CASPubMed Google Scholar
Yao, T.-P. et al. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell71, 63–72 (1992). CASPubMed Google Scholar
Woodard, C. T., Baehrecke, E. H. & Thummel, C. S. A molecular mechanism for the stage-specificity of the Drosophila prepupal genetic response to ecdysone. Cell79, 607–615 (1994). CASPubMed Google Scholar
Broadus, J. et al. The Drosophila βFTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. Mol. Cell3, 143–149 (1999). CASPubMed Google Scholar
Cryns, V. & Yuan, J. Proteases to die for. Genes Dev.12, 1551–1570 (1998). CASPubMed Google Scholar
Wu, Y.-C., Stanfield, G. M. & Horvitz, H. R. NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev.14, 536–548 (2000). CASPubMedPubMed Central Google Scholar
McIlroy, D. et al. An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev.14, 549–558 (2000). CASPubMedPubMed Central Google Scholar
Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature405, 85–90 (2000). CASPubMed Google Scholar
Henson, P. M., Bratton, D. L. & Fadok, V. A. The phosphatidylserine receptor: a crucial molecular switch? Nature Rev. Mol. Cell Biol.2, 627–633 (2001). CAS Google Scholar
Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature407, 784–788 (2000). CASPubMed Google Scholar
Franc, N. C., Heitzler, P., Ezekowitz, A. B. & White, K. Requirement for Croquemort in phagocytosis of apoptotic cells in Drosophila. Science284, 1991–1994 (1999). CASPubMed Google Scholar
Ellis, R. E., Jacobson, D. & Horvitz, R. H. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics129, 79–94 (1991).Identification of mutations in genes that are required for engulfment of dying cells. CASPubMedPubMed Central Google Scholar
Hedgecock, E. M., Sulston, J. E. & Thomson, J. N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science220, 1277–1279 (1983).First genetic screen to identify mutations in cell death genes. CASPubMed Google Scholar
Zhou, Z., Hartwieg, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell104, 43–56 (2001). CASPubMed Google Scholar
Liu, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell93, 961–972 (1998). CASPubMed Google Scholar
Wu, Y.-C. & Horvitz, H. R. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell93, 951–960 (1998). CASPubMed Google Scholar
Wu, Y.-C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature392, 501–504 (1998). CASPubMed Google Scholar
Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol.2, 131–136 (2000). CASPubMed Google Scholar
Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell107, 27–41 (2001). CASPubMed Google Scholar
Chung, S., Gumienny, T. L., Hengartner, M. O. & Driscoll, M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature Cell Biol.2, 931–937 (2000). CASPubMed Google Scholar
Hirt, U. A., Gantner, F. & Leist, M. Phagocytosis of nonapoptotic cells dying by caspase independent mechanisms. J. Immunol.164, 6520–6529 (2000). CASPubMed Google Scholar
Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell108, 153–164 (2002). CASPubMed Google Scholar
Flemming, W. Über die bildung von richtungsfiguren in säugethiereiern beim utergang Graaf'scher folikel. Arch. Anat. Physiol. 221–244 (1885).
Ellis, R. E. & Horvitz, R. H. Genetic control of programmed cell death in the nematode C. elegans. Cell44, 817–829 (1986).This study identified mutations in genes that would later be known as the core cell-death machinery, includingced-3, ced-4andced-9. CASPubMed Google Scholar
Alnemri, E. S. et al. Human ICE/CED–3 protease nomenclature. Cell87, 171 (1996). CASPubMed Google Scholar
Villa, P., Kaufmann, S. H. & Earnshaw, W. C. Caspases and caspase inhibitors. Trends Biochem. Sci.22, 388–393 (1997). CASPubMed Google Scholar
Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell91, 479–489 (1997). CASPubMed Google Scholar
Zou, H. et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3. Cell90, 405–413 (1997). CASPubMed Google Scholar
Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science258, 1955–1957 (1992). CASPubMed Google Scholar
Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell76, 665–676 (1994). CASPubMed Google Scholar
Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature9, 494–499 (1992). Google Scholar
McCall, K. & Steller, H. Requirement for DCP-1 caspase during Drosophila oogenesis. Science279, 230–234 (1998). CASPubMed Google Scholar
Song, Z., McCall, K. & Steller, H. DCP-1, a Drosophila cell death protease essential for development. Science275, 536–540 (1997). CASPubMed Google Scholar
Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol.1, 272–279 (1999). CASPubMed Google Scholar
Rodriguez, A., Chen, P., Oliver, H. & Abrams, J. M. Unrestricted caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, dark. EMBO J.21, 2189–2197 (2002). CASPubMedPubMed Central Google Scholar
Cecconi, F. et al. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell94, 727–737 (1998). CASPubMed Google Scholar
Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell94, 739–750 (1998). CASPubMed Google Scholar
Varfolomeev, E. E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity9, 267–276 (1998). CASPubMed Google Scholar
Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature384, 368–372 (1996). CASPubMed Google Scholar
Kuida, K. et al. Reduced apoptosis and cytochrome _c_-mediated caspase activation in mice lacking caspase 9. Cell94, 325–337 (1998). CASPubMed Google Scholar
Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science267, 1506–1510 (1995). CASPubMed Google Scholar
Rinkenberger, J. L. et al. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev.14, 23–27 (2000). CASPubMedPubMed Central Google Scholar
Takeshige, K. et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol.119, 301–311 (1992). CASPubMed Google Scholar
Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science290, 1717–1721 (2000). CASPubMedPubMed Central Google Scholar
Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nature Rev. Mol. Cell Biol.2, 211–216 (2001). CAS Google Scholar
Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenes is by beclin 1. Nature402, 672–676 (1999). CASPubMed Google Scholar
Manasek, F. J. Myocardial cell death in the embryonic chick ventricle. J. Embryol. Exp. Morphol.21, 271–284 (1969). CASPubMed Google Scholar
Young, R. W. Cell death during differentiation of the retina in the mouse. J. Comp. Neurol.229, 362–373 (1984). CASPubMed Google Scholar
Fox, H. Aspects of tail muscle ultrastructure and its degeneration in Rana temporaria. J. Embryol. Exp. Morphol.34, 191–207 (1975). CASPubMed Google Scholar
Fox, H. Degeneration of the nerve cord in the tail of Rana temporaria during metamorphic climax: study by electron microscopy. J. Embryol. Exp. Morphol.30, 377–396 (1973). CASPubMed Google Scholar
Bodenstein, D. in Biology of Drosophila (ed. Demerec, M.) 275–367 (Hafner Publishing, New York, 1965). Google Scholar
Robertson, C. W. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J. Morphol.59, 351–399 (1936). Google Scholar
Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol.56, 110–156 (1977). CASPubMed Google Scholar
Wolff, T. & Ready, D. F. Cell death in normal and rough eye mutants of Drosophila. Development113, 825–839 (1991). CASPubMed Google Scholar
Seinsch, W. & Schweichel, J. U. Physiologic cell necroses during the early development of muscles of the back in embryonic mice. Z. Anat. Entwicklungsgesch145, 101–112 (1974). CASPubMed Google Scholar
Abrams, J. M., White, K., Fessler, L. I. & Steller, H. Programmed cell death during Drosophila embryogenesis. Development117, 29–43 (1993). CASPubMed Google Scholar
MacCallum, D. E. et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene13, 2575–2587 (1996). CASPubMed Google Scholar