- Los, F. C., Randis, T. M., Aroian, R. V. & Ratner, A. J. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 77, 173–207 (2013).
CAS PubMed PubMed Central Google Scholar
- Bischofberger, M., Iacovache, I. & van der Goot, F. G. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12, 266–275 (2012).
CAS PubMed Google Scholar
- Alves, G. G., Machado de Avila, R. A., Chavez-Olortegui, C. D. & Lobato, F. C. Clostridium perfringens ε-toxin: the third most potent bacterial toxin known. Anaerobe 30, 102–107 (2014).
CAS PubMed Google Scholar
- Lesieur, C., Vecsey-Semjn, B., Abrami, L., Fivaz, M. & van der Goot, F. G. Membrane insertion: the strategy of toxins. Mol. Membrane Biol. 14, 45–64 (1997).
CAS Google Scholar
- Iacovache, I., Bischofberger, M. & van der Goot, F. G. Structure and assembly of pore-forming proteins. Curr. Opin. Struct. Biol. 20, 241–246 (2010).
CAS PubMed Google Scholar
- Gouaux, E. Channel-forming toxins: tales of transformation. Curr. Opin. Struct. Biol. 7, 566–573 (1997).
CAS PubMed Google Scholar
- Szczesny, P. et al. Extending the aerolysin family: from bacteria to vertebrates. PLoS ONE 6, e20349 (2011). This study extended the boundaries of the aerolysin family beyond bacteria to a species range that encompasses all kingdoms of life.
CAS PubMed PubMed Central Google Scholar
- Galinier, R. et al. Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni. PLoS Pathog. 9, e1003216 (2013).
CAS PubMed PubMed Central Google Scholar
- Xiang, Y. et al. Host-derived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection. Proc. Natl Acad. Sci. USA 111, 6702–6707 (2014).
CAS PubMed Google Scholar
- Alonzo, F. & Torres, V. J. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 78, 199–230 (2014).
PubMed PubMed Central Google Scholar
- Diabate, M. et al. Escherichia coli α-hemolysin counteracts the anti-virulence innate immune response triggered by the rho GTPase activating toxin CNF1 during bacteremia. PLoS Pathog. 11, e1004732 (2015).
PubMed PubMed Central Google Scholar
- Lakey, J. H., van der Goot, F. G. & Pattus, F. All in the family: the toxic activity of pore-forming toxins. Toxicology 87, 85–108 (1994).
CAS PubMed Google Scholar
- Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).
CAS PubMed PubMed Central Google Scholar
- Parker, M. W., Pattus, F., Tucker, A. D. & Tsernoglou, D. Structure of the membrane-pore-forming fragment of colicin A. Nature 337, 93–96 (1989). This article shows the first structure of the soluble form of a PFT, which provided new insights into the mechanism of pore formation.
CAS PubMed Google Scholar
- Lakey, J. H. et al. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. Eur. J. Biochem. 196, 599–607 (1991).
CAS PubMed Google Scholar
- Ridley, H., Johnson, C. L. & Lakey, J. H. Interfacial interactions of pore-forming colicins. Adv. Exp. Med. Biol. 677, 81–90 (2010).
CAS PubMed Google Scholar
- Parker, M. W., Tucker, A. D., Tsernoglou, D. & Pattus, F. Insights into membrane insertion based on studies of colicins. Trends Biochem. Sci. 15, 126–129 (1990).
CAS PubMed Google Scholar
- Parker, M. W., Postma, J. P., Pattus, F., Tucker, A. D. & Tsernoglou, D. Refined structure of the pore-forming domain of colicin A at 2.4 Å resolution. J. Mol. Biol. 224, 639–657 (1992).
CAS PubMed Google Scholar
- Kienker, P. K., Qiu, X., Slatin, S. L., Finkelstein, A. & Jakes, K. S. Transmembrane insertion of the colicin Ia hydrophobic hairpin. J. Membr. Biol. 157, 27–37 (1997).
CAS PubMed Google Scholar
- Kim, Y., Valentine, K., Opella, S. J., Schendel, S. L. & Cramer, W. A. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Sci. 7, 342–348 (1998).
CAS PubMed PubMed Central Google Scholar
- Tory, M. C. & Merrill, A. R. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1. J. Biol. Chem. 274, 24539–24549 (1999).
CAS PubMed Google Scholar
- Shin, Y. K., Levinthal, C., Levinthal, F. & Hubbell, W. L. Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259, 960–963 (1993).
CAS PubMed Google Scholar
- Pulagam, L. P. & Steinhoff, H. J. Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling. J. Mol. Biol. 425, 1782–1794 (2013).
CAS PubMed Google Scholar
- Slatin, S. L., Qiu, X. Q., Jakes, K. S. & Finkelstein, A. Identification of a translocated protein segment in a voltage-dependent channel. Nature 371, 158–161 (1994).
CAS PubMed Google Scholar
- Dunkel, S., Pulagam, L. P., Steinhoff, H. J. & Klare, J. P. In vivo EPR on spin labeled colicin A reveals an oligomeric assembly of the pore-forming domain in E. coli membranes. Phys. Chem. Chem. Phys. 17, 4875–4878 (2015).
CAS PubMed Google Scholar
- Greig, S. L., Radjainia, M. & Mitra, A. K. Oligomeric structure of colicin ia channel in lipid bilayer membranes. J. Biol. Chem. 284, 16126–16134 (2009).
CAS PubMed PubMed Central Google Scholar
- Choe, S. et al. The crystal structure of diphtheria toxin. Nature 357, 216–222 (1992).
CAS PubMed Google Scholar
- Xu, C., Wang, B. C., Yu, Z. & Sun, M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins (Basel) 6, 2732–2770 (2014).
CAS Google Scholar
- Barta, M. L. et al. The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins. J. Mol. Biol. 417, 395–405 (2012).
CAS PubMed PubMed Central Google Scholar
- Westphal, D., Dewson, G., Czabotar, P. E. & Kluck, R. M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 1813, 521–531 (2011).
CAS PubMed Google Scholar
- Garcia-Saez, A. J., Fuertes, G., Suckale, J. & Salgado, J. Permeabilization of the outer mitochondrial membrane by Bcl-2 proteins. Adv. Exp. Med. Biol. 677, 91–105 (2010).
CAS PubMed Google Scholar
- Hunt, S., Green, J. & Artymiuk, P. J. Hemolysin E (HlyE, ClyA, SheA) and related toxins. Adv. Exp. Med. Biol. 677, 116–126 (2010).
CAS PubMed Google Scholar
- Madegowda, M., Eswaramoorthy, S., Burley, S. K. & Swaminathan, S. X-ray crystal structure of the B component of hemolysin BL from Bacillus cereus. Proteins 71, 534–540 (2008).
CAS PubMed PubMed Central Google Scholar
- Jessberger, N., Dietrich, R., Bock, S., Didier, A. & Martlbauer, E. Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon 77, 49–57 (2014).
CAS PubMed Google Scholar
- Wallace, A. J. et al. E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100, 265–276 (2000).
CAS PubMed Google Scholar
- Mueller, M., Grauschopf, U., Maier, T., Glockshuber, R. & Ban, N. The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 459, 726–730 (2009). This paper reports the first atomic-resolution structure of an α-PFT pore, revealing the complex protomer rearrangement required for pore assembly.
CAS PubMed Google Scholar
- Ganash, M. et al. Structure of the NheA component of the Nhe toxin from Bacillus cereus: implications for function. PLoS ONE 8, e74748 (2013).
CAS PubMed PubMed Central Google Scholar
- Vaidyanathan, M. S., Sathyanarayana, P., Maiti, P. K., Visweswariah, S. S. & Ayappa, K. G. Lysis dynamics and membrane oligomerization pathways for Cytolysin A (ClyA) pore-forming toxin. RSC Adv. 4, 4930–4942 (2014).
CAS Google Scholar
- Fahie, M. et al. A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A. J. Biol. Chem. 288, 31042–31051 (2013).
CAS PubMed PubMed Central Google Scholar
- Elluri, S. et al. Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains. PLoS ONE 9, e106731 (2014).
PubMed PubMed Central Google Scholar
- Kristan, K. C., Viero, G., Dalla Serra, M., Macek, P. & Anderluh, G. Molecular mechanism of pore formation by actinoporins. Toxicon 54, 1125–1134 (2009).
PubMed Google Scholar
- Hinds, M. G., Zhang, W., Anderluh, G., Hansen, P. E. & Norton, R. S. Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J. Mol. Biol. 315, 1219–1229 (2002).
CAS PubMed Google Scholar
- Athanasiadis, A., Anderluh, G., Macek, P. & Turk, D. Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 9, 341–346 (2001).
CAS PubMed Google Scholar
- Mancheno, J. M., Martin-Benito, J., Martinez-Ripoll, M., Gavilanes, J. G. & Hermoso, J. A. Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 11, 1319–1328 (2003).
CAS PubMed Google Scholar
- Mechaly, A. E. et al. Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins. Structure 19, 181–191 (2011).
CAS PubMed Google Scholar
- Barlic, A. et al. Lipid phase coexistence favors membrane insertion of equinatoxin-II, a pore-forming toxin from Actinia equina. J. Biol. Chem. 279, 34209–34216 (2004).
CAS PubMed Google Scholar
- Ros, U. et al. The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. Biochim. Biophys. Acta 1828, 2757–2762 (2013).
CAS PubMed Google Scholar
- Rojko, N. et al. Membrane damage by an α-helical pore-forming protein, equinatoxin II, proceeds through a succession of ordered steps. J. Biol. Chem. 288, 23704–23715 (2013).
CAS PubMed PubMed Central Google Scholar
- Baker, M. A., Rojko, N., Cronin, B., Anderluh, G. & Wallace, M. I. Photobleaching reveals heterogeneous stoichiometry for equinatoxin II oligomers. Chembiochem 15, 2139–2145 (2014).
CAS PubMed Google Scholar
- Tanaka, K., Caaveiro, J. M., Morante, K., Gonzalez-Manas, J. M. & Tsumoto, K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat. Commun. 6, 6337 (2015). This study shows the importance of sphingomyelin lipids for the integral assembly of the final PFT pore structure.
PubMed PubMed Central Google Scholar
- Schreiber, M. P., Chan, C. M. & Shorr, A. F. Bacteremia in Staphylococcus aureus pneumonia: outcomes and epidemiology. J. Crit. Care 26, 395–401 (2011).
PubMed Google Scholar
- DuMont, A. L. & Torres, V. J. Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. Trends Microbiol. 22, 21–27 (2014).
CAS PubMed Google Scholar
- Savva, C. G. et al. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J. Biol. Chem. 288, 3512–3522 (2013).
CAS PubMed Google Scholar
- Keyburn, A. L., Bannam, T. L., Moore, R. J. & Rood, J. I. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins 2, 1913–1927 (2010).
CAS PubMed PubMed Central Google Scholar
- De, S. & Olson, R. Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc. Natl Acad. Sci. USA 108, 7385–7390 (2011).
CAS PubMed Google Scholar
- Jayasinghe, L. & Bayley, H. The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Sci. 14, 2550–2561 (2005).
CAS PubMed PubMed Central Google Scholar
- Yamashita, K. et al. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc. Natl Acad. Sci. USA 108, 17314–17319 (2011).
CAS PubMed Google Scholar
- Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996). This paper reported the first atomic-resolution structure of a complete PFT pore inserted in a membrane (a β-PFT pore in this case), highlighting the mechanism required for switching from a soluble inactive toxin to an active haemolytic pore.
CAS PubMed Google Scholar
- Yamashita, D. et al. Molecular basis of transmembrane β-barrel formation of staphylococcal pore-forming toxins. Nat. Commun. 5, 4897 (2014).
CAS PubMed Google Scholar
- Olson, R., Nariya, H., Yokota, K., Kamio, Y. & Gouaux, E. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat. Struct. Biol. 6, 134–140 (1999).
CAS PubMed Google Scholar
- Olson, R. & Gouaux, E. Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. J. Mol. Biol. 350, 997–1016 (2005).
CAS PubMed Google Scholar
- Huyet, J. et al. Structural insights into δ-toxin pore formation. PLoS ONE 8, e66673 (2013).
CAS PubMed PubMed Central Google Scholar
- Paul, K. & Chattopadhyay, K. Pre-pore oligomer formation by Vibrio cholerae cytolysin: insights from a truncated variant lacking the pore-forming pre-stem loop. Biochem. Biophys. Res. Commun. 443, 189–193 (2014).
CAS PubMed Google Scholar
- Iacovache, I., Dal Peraro, M. & van der Goot, F. G. The Comprehensive Sourcebook of Bacterial Protein Toxins (Elsevier Ltd, 2015).
Google Scholar
- Ballard, J., Sokolov, Y., Yuan, W.-L., Kagan, B. L. & Tweten, R. K. Activation and mechanism of Clostridium septicum α-toxin. Mol. Microbiol. 10, 627–634 (1993).
CAS PubMed Google Scholar
- Opota, O. et al. Monalysin, a novel ss-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog. 7, e1002259 (2011).
CAS PubMed PubMed Central Google Scholar
- Zhao, F. et al. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Res. 21, 1–13 (2013).
PubMed PubMed Central Google Scholar
- Gao, Q. et al. βγ-CAT, a non-lens βγ-crystallin and trefoil factor complex, induces calcium-dependent platelet apoptosis. Thromb. Haemost. 105, 846–854 (2011).
CAS PubMed Google Scholar
- Parker, M. W. et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367, 292–295 (1994). This paper reported the first structure of a β-PFT in its soluble form and an initial model of pore architecture based on low-resolution EM data.
CAS PubMed Google Scholar
- Abrami, L., Fivaz, M. & van Der Goot, F. G. Adventures of a pore-forming toxin at the target cell surface. Trends Microbiol. 8, 168–172 (2000).
CAS PubMed Google Scholar
- Iacovache, I. et al. A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J. 25, 457–466 (2006).
CAS PubMed PubMed Central Google Scholar
- Melton, J. A., Parker, M. W., Rossjohn, J., Buckley, J. T. & Tweten, R. K. The identification and structure of the membrane-spanning domain of the Clostridium septicum α-toxin. J. Biol. Chem. 279, 14315–14322 (2004).
CAS PubMed Google Scholar
- Howard, S. P. & Buckley, J. T. Activation of the hole forming toxin aerolysin by extracellular processing. J. Bacteriol. 163, 336–340 (1985).
CAS PubMed PubMed Central Google Scholar
- Iacovache, I. et al. Dual chaperone role of the C-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin. PLoS Pathog. 7, e1002135 (2011).
CAS PubMed PubMed Central Google Scholar
- Degiacomi, M. T. et al. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 9, 623–629 (2013). This study used an integrative modelling approach to reveal the architecture of the aerolysin pore at a near-atomic resolution.
CAS PubMed Google Scholar
- Unno, H., Goda, S. & Hatakeyama, T. Hemolytic lectin CEL-III heptamerizes via a large structural transition from α-helices to a β-barrel during the transmembrane pore formation process. J. Biol. Chem. 289, 12805–12812 (2014).
CAS PubMed PubMed Central Google Scholar
- Popoff, M. R. ε-toxin: a fascinating pore-forming toxin. FEBS J. 278, 4602–4615 (2011).
CAS PubMed Google Scholar
- Popoff, M. R. Clostridial pore-forming toxins: powerful virulence factors. Anaerobe 30, 220–238 (2014).
CAS PubMed Google Scholar
- Briggs, D. C. et al. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J. Mol. Biol. 413, 138–149 (2011).
CAS PubMed PubMed Central Google Scholar
- Kitadokoro, K. et al. Crystal structure of Clostridium perfringens enterotoxin displays features of β-pore-forming toxins. J. Biol. Chem. 286, 19549–19555 (2011).
CAS PubMed PubMed Central Google Scholar
- Yelland, T. S. et al. Structure of a C. perfringens enterotoxin mutant in complex with a modified Claudin-2 extracellular loop 2. J. Mol. Biol. 426, 3134–3147 (2014).
CAS PubMed Google Scholar
- Mancheno, J. M., Tateno, H., Goldstein, I. J., Martinez-Ripoll, M. & Hermoso, J. A. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J. Biol. Chem. 280, 17251–17259 (2005).
CAS PubMed Google Scholar
- Sher, D. J. et al. Hydralysins: a new category of β-pore-forming toxins in cnidaria. Characterization and preliminary structure-function analysis. J. Biol. Chem. 280, 22847–22855 (2005).
CAS PubMed Google Scholar
- De Colibus, L. et al. Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure 20, 1498–1507 (2012).
CAS PubMed PubMed Central Google Scholar
- Hotze, E. M. & Tweten, R. K. Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim. Biophys. Acta 1818, 1028–1038 (2012).
CAS PubMed Google Scholar
- Hotze, E. M. et al. Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria. Infect. Immun. 81, 216–225 (2013).
CAS PubMed PubMed Central Google Scholar
- Hadders, M. A., Beringer, D. X. & Gros, P. Structure of C8α-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317, 1552–1554 (2007).
CAS PubMed Google Scholar
- Rosado, C. J. et al. A common fold mediates vertebrate defense and bacterial attack. Science 317, 1548–1551 (2007).
CAS PubMed Google Scholar
- Law, R. H. et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468, 447–451 (2010).
CAS PubMed Google Scholar
- Lukoyanova, N. et al. Conformational changes during pore formation by the perforin-related protein pleurotolysin. PLoS Biol. 13, e1002049 (2015).
PubMed PubMed Central Google Scholar
- Roiko, M. S. & Carruthers, V. B. New roles for perforins and proteases in apicomplexan egress. Cell. Microbiol. 11, 1444–1452 (2009).
CAS PubMed PubMed Central Google Scholar
- Deligianni, E. et al. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes. Cell. Microbiol. 15, 1438–1455 (2013).
CAS PubMed Google Scholar
- Xu, Q. et al. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66, 1297–1305 (2010).
CAS PubMed PubMed Central Google Scholar
- Chatzidaki-Livanis, M., Coyne, M. J. & Comstock, L. E. An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins. Mol. Microbiol. 94, 1361–1374 (2014).
CAS PubMed PubMed Central Google Scholar
- Rossjohn, J., Feil, S. C., McKinstry, W. J., Tweten, R. K. & Parker, M. W. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89, 685–692 (1997). This paper presented the first structure of a CDC (PFO) and a model of the pore, which revealed the mechanism of pore insertion and the role of cholesterol lipids as CDC receptors.
CAS PubMed Google Scholar
- Xu, L. et al. Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein Cell 1, 96–105 (2010).
CAS PubMed PubMed Central Google Scholar
- Johnson, S., Brooks, N. J., Smith, R. A., Lea, S. M. & Bubeck, D. Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep. 3, 1369–1377 (2013).
CAS PubMed PubMed Central Google Scholar
- Koster, S. et al. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nat. Commun. 5, 3690 (2014).
PubMed Google Scholar
- Feil, S. C. et al. Structure of the lectin regulatory domain of the cholesterol-dependent cytolysin lectinolysin reveals the basis for its lewis antigen specificity. Structure 20, 248–258 (2012).
CAS PubMed PubMed Central Google Scholar
- Bourdeau, R. W. et al. Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J. Biol. Chem. 284, 14645–14656 (2009).
CAS PubMed PubMed Central Google Scholar
- Feil, S. C., Ascher, D. B., Kuiper, M. J., Tweten, R. K. & Parker, M. W. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J. Mol. Biol. 426, 785–792 (2014).
CAS PubMed Google Scholar
- Tilley, S. J., Orlova, E. V., Gilbert, R. J., Andrew, P. W. & Saibil, H. R. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247–256 (2005).
CAS PubMed Google Scholar
- Czajkowsky, D. M., Hotze, E. M., Shao, Z. & Tweten, R. K. Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J. 23, 3206–3215 (2004).
CAS PubMed PubMed Central Google Scholar
- Shepard, L. A. et al. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37, 14563–14574 (1998). This study revealed a structure for the membrane-spanning domain of PFO, and showed the structural switch that accompanies pore formation.
CAS PubMed Google Scholar
- Shatursky, O. et al. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99, 293–299 (1999).
CAS PubMed Google Scholar
- Sato, T. K., Tweten, R. K. & Johnson, A. E. Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel. Nat. Chem. Biol. 9, 383–389 (2013).
CAS PubMed PubMed Central Google Scholar
- Ramachandran, R., Tweten, R. K. & Johnson, A. E. Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment. Nat. Struct. Mol. Biol. 11, 697–705 (2004).
CAS PubMed Google Scholar
- Sonnen, A. F., Plitzko, J. M. & Gilbert, R. J. Incomplete pneumolysin oligomers form membrane pores. Open Biol. 4, 140044 (2014).
PubMed PubMed Central Google Scholar
- Leung, C. et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLIFE 3, e04247 (2014).
PubMed PubMed Central Google Scholar
- Wade, K. R. et al. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin. Proc. Natl Acad. Sci. USA 112, 2204–2209 (2015).
CAS PubMed Google Scholar
- Reboul, C. F., Whisstock, J. C. & Dunstone, M. A. A new model for pore formation by cholesterol-dependent cytolysins. PLoS Comput. Biol. 10, e1003791 (2014).
PubMed PubMed Central Google Scholar
- Jiang, J., Pentelute, B. L., Collier, R. J. & Zhou, Z. H. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521, 545–549 (2015).
CAS PubMed PubMed Central Google Scholar
- Kintzer, A. F., Sterling, H. J., Tang, I. I., Williams, E. R. & Krantz, B. A. Anthrax toxin receptor drives protective antigen oligomerization and stabilizes the heptameric and octameric oligomer by a similar mechanism. PLoS ONE 5, e13888 (2010).
PubMed PubMed Central Google Scholar
- Krantz, B. A. et al. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309, 777–781 (2005).
CAS PubMed PubMed Central Google Scholar
- Meusch, D. et al. Mechanism of Tc toxin action revealed in molecular detail. Nature 508, 61–65 (2014).
CAS PubMed Google Scholar
- Gatsogiannis, C. et al. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495, 520–523 (2013).
CAS PubMed Google Scholar
- Levan, S., De, S. & Olson, R. Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity. J. Mol. Biol. 425, 944–957 (2013).
CAS PubMed Google Scholar
- Rai, A. K., Paul, K. & Chattopadhyay, K. Functional mapping of the lectin activity site on the β-prism domain of Vibrio cholerae cytolysin: implications for the membrane pore-formation mechanism of the toxin. J. Biol. Chem. 288, 1665–1673 (2013).
CAS PubMed Google Scholar
- Kaus, K., Lary, J. W., Cole, J. L. & Olson, R. Glycan specificity of the Vibrio vulnificus hemolysin lectin outlines evolutionary history of membrane targeting by a toxin family. J. Mol. Biol. 426, 2800–2812 (2014).
CAS PubMed PubMed Central Google Scholar
- Hong, Y. et al. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum α-toxin. EMBO J. 21, 5047–5056 (2002).
CAS PubMed PubMed Central Google Scholar
- Diep, D. B., Nelson, K. L., Raja, S. M., cMaster, R. W. & Buckley, J. T. Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J. Biol. Chem. 273, 2355–2360 (1998).
CAS PubMed Google Scholar
- Cole, A. R. et al. Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol. 11, 797–798 (2004).
CAS PubMed Google Scholar
- Akiba, T. et al. Crystallization of parasporin-2, a Bacillus thuringiensis crystal protein with selective cytocidal activity against human cells. Acta Crystallogr. D Biol. Crystallogr. 60, 2355–2357 (2004).
PubMed Google Scholar
- Ivie, S. E. & McClain, M. S. Identification of amino acids important for binding of Clostridium perfringens ε-toxin to host cells and to HAVCR1. Biochemistry 51, 7588–7595 (2012).
CAS PubMed PubMed Central Google Scholar
- Bokori-Brown, M. et al. Clostridium perfringens ε-toxin H149A mutant as a platform for receptor binding studies. Protein Sci. 22, 650–659 (2013).
CAS PubMed PubMed Central Google Scholar
- Shewell, L. K. et al. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proc. Natl Acad. Sci. USA 111, E5312–5320 (2014).
CAS PubMed Google Scholar
- Johnson, C. L. et al. The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. Mol. Microbiol. 92, 440–452 (2014).
CAS PubMed PubMed Central Google Scholar
- Mukherjee, S. et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505, 103–107 (2014).
PubMed Google Scholar
- Fivaz, M., Abrami, L. & van der Goot, F. G. Landing on lipid rafts. Trends Cell Biol. 9, 212–213 (1999).
CAS PubMed Google Scholar
- Abrami, L. & van der Goot, F. G. Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J. Cell Biol. 147, 175–184 (1999).
CAS PubMed PubMed Central Google Scholar
- Kobayashi, T., Makino, A., Ishii, K., Yamaji, A. & Kiyokawa, E. Lysenin:sphingomyelin specific probe. Mol Biol Cell Abstr. 11, 314a (2000).
Google Scholar
- Skocaj, M. et al. The sensing of membrane microdomains based on pore-forming toxins. Curr. Med. Chem. 20, 491–501 (2013).
CAS PubMed Google Scholar
- Lin, Q. & London, E. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. J. Biol. Chem. 288, 1340–1352 (2013).
CAS PubMed Google Scholar
- Tweten, R. K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect. Immun. 73, 6199–6209 (2005).
CAS PubMed PubMed Central Google Scholar
- Dowd, K. J., Farrand, A. J. & Tweten, R. K. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog. 8, e1002787 (2012).
CAS PubMed PubMed Central Google Scholar
- Farrand, A. J., LaChapelle, S., Hotze, E. M., Johnson, A. E. & Tweten, R. K. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc. Natl Acad. Sci. USA 107, 4341–4346 (2010).
CAS PubMed Google Scholar
- Alonzo, F. et al. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493, 51–55 (2013). This study revealed how the selectivity of leukocidins towards different immune cells is mediated by specific chemokine receptors.
PubMed Google Scholar
- Reyes-Robles, T. et al. Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14, 453–459 (2013). S. aureus LukED is shown in this study to target both innate and adaptive immune responses by binding to CXCR1 and CXCR2 on neutrophils in addition to its established role of binding to CCR5 on T lymphocytes, macrophages and dendritic cells.
CAS PubMed Google Scholar
- Spaan, A. N. et al. The staphylococcal toxin Panton-Valentine leukocidin targets human C5a receptors. Cell Host Microbe 13, 584–594 (2013).
CAS PubMed Google Scholar
- Spaan, A. N. et al. The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat. Commun. 5, 5438 (2014).
CAS PubMed PubMed Central Google Scholar
- Wilke, G. A. & Bubeck Wardenburg, J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc. Natl Acad. Sci. USA 107, 13473–13478 (2010).
CAS PubMed Google Scholar
- Berube, B. J. & Bubeck Wardenburg, J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 5, 1140–1166 (2013).
Google Scholar
- Giddings, K. S., Zhao, J., Sims, P. J. & Tweten, R. K. Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat. Struct. Mol. Biol. 11, 1173–1178 (2004). This study extended the known cellular specificity of CDCs by showing that they bind to protein receptors such as CD59 in addition to cholesterol.
CAS PubMed Google Scholar
- Tabata, A. et al. The diversity of receptor recognition in cholesterol-dependent cytolysins. Microbiol. Immunol. 58, 155–171 (2014).
CAS PubMed Google Scholar
- Yang, W. S. et al. Suicide cancer gene therapy using pore-forming toxin, streptolysin O. Mol. Cancer Ther. 5, 1610–1619 (2006).
CAS PubMed Google Scholar
- Ayub, M., Stoddart, D. & Bayley, H. Nucleobase recognition by truncated α-hemolysin pores. ACS Nano 9, 7895–7903 (2015).
CAS PubMed PubMed Central Google Scholar
- Stoddart, D. et al. Functional truncated membrane pores. Proc. Natl Acad. Sci. USA 111, 2425–2430 (2014).
CAS PubMed Google Scholar
- Dong, J. et al. Oroxylin A inhibits hemolysis via hindering the self-assembly of α-hemolysin heptameric transmembrane pore. PLoS Comput. Biol. 9, e1002869 (2013).
CAS PubMed PubMed Central Google Scholar
- Qiu, J. et al. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin. PLoS ONE 8, e80197 (2013).
PubMed PubMed Central Google Scholar
- Vivekananda, J., Salgado, C. & Millenbaugh, N. J. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem. Biophys. Res. Commun. 444, 433–438 (2014).
CAS PubMed Google Scholar
- Rai, A. K. & Chattopadhyay, K. Trapping of Vibrio cholerae cytolysin in the membrane-bound monomeric state blocks membrane insertion and functional pore formation by the toxin. J. Biol. Chem. 289, 16978–16987 (2014).
CAS PubMed PubMed Central Google Scholar
- Wu, Q. & Guo, Z. Glycosylphosphatidylinositols are potential targets for the development of novel inhibitors for aerolysin-type of pore-forming bacterial toxins. Med. Res. Rev. 30, 258–269 (2010).
PubMed Google Scholar
- Foletti, D. et al. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus α-hemolysin. J. Mol. Biol. 425, 1641–1654 (2013).
CAS PubMed Google Scholar
- Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).
CAS PubMed PubMed Central Google Scholar
- Fernandes da Costa, S. P. et al. Identification of a key residue for oligomerisation and pore-formation of Clostridium perfringens NetB. Toxins (Basel) 6, 1049–1061 (2014).
Google Scholar
- Bokori-Brown, M. et al. Clostridium perfringens ε toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia. Vaccine 32, 2682–2687 (2014).
CAS PubMed PubMed Central Google Scholar
- Cockeran, R. et al. Characterization of the interactions of the pneumolysoid, Δ6 PLY, with human neutrophils in vitro. Vaccine 29, 8780–8782 (2011).
CAS PubMed Google Scholar
- Douce, G., Ross, K., Cowan, G., Ma, J. T. & Mitchell, T. J. Novel mucosal vaccines generated by genetic conjugation of heterologous proteins to pneumolysin (PLY) from Streptococcus pneumoniae. Vaccine 28, 3231–3237 (2010).
CAS PubMed Google Scholar
- Mann, B. et al. Broadly protective protein-based pneumococcal vaccine composed of pneumolysin toxoid-CbpA peptide recombinant fusion protein. J. Infect. Dis. 209, 1116–1125 (2014).
CAS PubMed Google Scholar
- Hu, C. M. & Zhang, L. Nanotoxoid vaccines. Nano Today 9, 401–404 (2014).
CAS PubMed PubMed Central Google Scholar
- Hu, C. M., Fang, R. H., Luk, B. T. & Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8, 933–938 (2013). This study used Hla pores embedded in membrane-coated nanoparticles to promote an enhanced toxin-specific immune response.
CAS PubMed PubMed Central Google Scholar
- Walther, W. et al. Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4-overexpressing tumors. Gene Ther. 19, 494–503 (2012).
CAS PubMed Google Scholar
- Lal-Nag, M., Battis, M., Santin, A. D. & Morin, P. J. Claudin-6: a novel receptor for CPE-mediated cytotoxicity in ovarian cancer. Oncogenesis 1, e33 (2012).
CAS PubMed PubMed Central Google Scholar
- Veshnyakova, A. et al. Mechanism of Clostridium perfringens enterotoxin interaction with Claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. J. Biol. Chem. 287, 1698–1708 (2012).
CAS PubMed Google Scholar
- Linhartova, I. et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 (2010).
CAS PubMed PubMed Central Google Scholar
- Kudryashova, E., Heisler, D., Zywiec, A. & Kudryashov, D. S. Thermodynamic properties of the effector domains of MARTX toxins suggest their unfolding for translocation across the host membrane. Mol. Microbiol. 92, 1056–1071 (2014).
CAS PubMed Google Scholar
- Hyland, C., Vuillard, L., Hughes, C. & Koronakis, V. Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J. Bacteriol. 183, 5364–5370 (2001).
CAS PubMed PubMed Central Google Scholar
- Gonzalez, M. R. et al. Pore-forming toxins induce multiple cellular responses promoting survival. Cell. Microbiol. 13, 1026–1043 (2011).
CAS PubMed Google Scholar
- Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).
CAS PubMed Google Scholar
- Higa, N. et al. Vibrio parahaemolyticus effector proteins suppress inflammasome activation by interfering with host autophagy signaling. PLoS Pathog. 9, e1003142 (2013).
CAS PubMed PubMed Central Google Scholar
- Nagahama, M. et al. The p38 MAPK and JNK pathways protect host cells against Clostridium perfringens β-toxin. Infect. Immun. 81, 3703–3708 (2013).
CAS PubMed PubMed Central Google Scholar
- Craven, R. R. et al. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS ONE 4, e7446 (2009).
PubMed PubMed Central Google Scholar
- Soong, G., Chun, J., Parker, D. & Prince, A. S. aureus activation of caspase-1/calpain signaling mediates invasion through human keratinocytes. J. Infect. Dis. 205, 1571–1579 (2012).
CAS PubMed PubMed Central Google Scholar
- Holzinger, D. et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J. Leukoc. Biol. 92, 1069–1081 (2012).
CAS PubMed PubMed Central Google Scholar
- Di Venanzio, G., Stepanenko, T. M. & Garcia Vescovi, E. Serratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB. Infect. Immun. 82, 3542–3554 (2014).
PubMed PubMed Central Google Scholar
- Mestre, M. B. & Colombo, M. I. Autophagy and toxins: a matter of life or death. Curr. Mol. Med. 13, 241–251 (2013).
CAS PubMed Google Scholar
- Mestre, M. B. & Colombo, M. I. Staphylococcus aureus promotes autophagy by decreasing intracellular cAMP levels. Autophagy 8, 1865–1867 (2012).
CAS PubMed PubMed Central Google Scholar
- Hamon, M. A. et al. Histone modifications induced by a family of bacterial toxins. Proc. Natl Acad. Sci. USA 104, 13467–13472 (2007).
CAS PubMed Google Scholar
- Walev, I. et al. Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl Acad. Sci. USA 98, 3185–3190 (2001).
CAS PubMed Google Scholar
- Keefe, D. et al. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23, 249–262 (2005).
CAS PubMed Google Scholar
- McNeil, P. L. & Kirchhausen, T. An emergency response team for membrane repair. Nat. Rev. Mol. Cell Biol. 6, 499–505 (2005).
CAS PubMed Google Scholar
- Lesieur, C. et al. Increased stability upon heptamerization of the pore-forming toxin aerolysin. J. Biol. Chem. 274, 36722–36728 (1999).
CAS PubMed Google Scholar
- Idone, V., Tam, C. & Andrews, N. W. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol. 18, 552–559 (2008).
CAS PubMed PubMed Central Google Scholar
- Husmann, M. et al. Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis. FEBS Lett. 583, 337–344 (2009).
CAS PubMed Google Scholar
- Corrotte, M. et al. Caveolae internalization repairs wounded cells and muscle fibers. eLIFE 2, e00926 (2013).
PubMed PubMed Central Google Scholar
- Keyel, P. A. et al. Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J. Cell Sci. 124, 2414–2423 (2011).
CAS PubMed PubMed Central Google Scholar
- Jimenez, A. J. et al. ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014).
PubMed Google Scholar
- Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).
CAS PubMed Google Scholar
- Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).
CAS PubMed Google Scholar
- Prescher, J. et al. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog. 11, e1004677 (2015).
CAS PubMed PubMed Central Google Scholar
- Degiacomi, M. T. & Dal Peraro, M. Macromolecular symmetric assembly prediction using swarm intelligence dynamic modeling. Structure 21, 1097–1106 (2013).
CAS PubMed Google Scholar
- Tamo, G. E., Abriata, L. A. & Dal Peraro, M. The importance of dynamics in integrative modeling of supramolecular assemblies. Curr. Opin. Struct. Biol. 31, 28–34 (2015).
CAS PubMed Google Scholar
- Spiga, E., Degiacomi, M. T. & Dal Peraro, M. New strategies for integrative dynamic modeling of macromolecular assembly. Adv. Protein Chem. Struct. Biol. 96, 77–111 (2014).
CAS PubMed Google Scholar
- Russel, D. et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 10, e1001244 (2012).
CAS PubMed PubMed Central Google Scholar
- Thalassinos, K., Pandurangan, A. P., Xu, M., Alber, F. & Topf, M. Conformational states of macromolecular assemblies explored by integrative structure calculation. Structure 21, 1500–1508 (2013).
CAS PubMed PubMed Central Google Scholar
- Kudryashev, M. et al. In situ structural analysis of the Yersinia enterocolitica injectisome. eLIFE 2, e00792 (2013).
PubMed PubMed Central Google Scholar
- Sali, A. et al. Outcome of the first wwPDB hybrid/integrative methods task force workshop. Structure 23, 1156–1167 (2015).
CAS PubMed PubMed Central Google Scholar
- Leone, P. et al. X-ray and cryo-electron microscopy structures of monalysin pore-forming toxin reveal multimerization of the pro-form. J. Biol. Chem. 290, 13191–13201 (2015).
CAS PubMed PubMed Central Google Scholar