Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science216, 136–144 (1982). A historically important paper providing a major breakthrough in the understanding of spongiform encephalopathies. ArticleCASPubMed Google Scholar
Oesch, B. et al. A cellular gene encodes scrapie PrP 27-30 protein. Cell40, 735–746 (1985). A historically important paper showing that the gene encoding what is believed to be the infectious molecule is encoded by the host. ArticleCASPubMed Google Scholar
Chesebro, B. et al. Identification of scrapie prion protein-specific messenger RNA in scrapie-infected and uninfected brain. Nature315, 331–333 (1985). ArticleCASPubMed Google Scholar
Basler, K. et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell46, 417–428 (1986). ArticleCASPubMed Google Scholar
Stahl, N. et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry32, 1991–2002 (1993). ArticleCASPubMed Google Scholar
Prusiner, S. B. Prions causing degenerative neurological diseases. Annu. Rev. Med.38, 381–398 (1987). ArticleCASPubMed Google Scholar
Hsiao, K. et al. Linkage of a prion protein missense variant to Gerstmann–Sträussler syndrome. Nature338, 342–345 (1989). Established the first genetic link between a familial prion disease and thePrPgene. ArticleCASPubMed Google Scholar
Prusiner, S. B. et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell63, 673–686 (1990). First demonstration that susceptibility to prion disease is modulated by the sequence of the host PrP. ArticleCASPubMed Google Scholar
Büeler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature356, 577–582 (1992). ArticlePubMed Google Scholar
Büeler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell73, 1339–1347 (1993). Proof that expression of PrP is essential for prion propagation and pathogenesis. ArticlePubMed Google Scholar
Wickner, R. B. et al. Yeast prions act as genes composed of self-propagating protein amyloids. Adv. Protein Chem.57, 313–334 (2001). A review of the phenomenon of yeast prions by the person who discovered them. ArticleCASPubMed Google Scholar
Riesner, D. et al. Prions and nucleic acids: search for 'residual' nucleic acids and screening for mutations in the PrP gene. Dev. Biol. Stand.80, 173–181 (1993). CASPubMed Google Scholar
Chesebro, B. Prion protein and the transmissible spongiform encephalopathy diseases. Neuron24, 503–506 (1999). ArticleCASPubMed Google Scholar
Manuelidis, L. Transmissible encephalopathies: speculations and realities. Viral Immunol.16, 123–139 (2003). An overly critical assessment of the 'protein-only' hypothesis, but worth looking at. ArticleCASPubMed Google Scholar
Griffith, J. S. Self-replication and scrapie. Nature215, 1043–1044 (1967). First proposal of the 'protein-only' hypothesis. ArticleCASPubMed Google Scholar
Safar, J. et al. Eight prion strains have PrPSc molecules with different conformations. Nature Med.4, 1157–1165 (1998). Provides evidence that different prion strains are associated with different PrP conformations. ArticleCASPubMed Google Scholar
Neary, K., Caughey, B., Ernst, D., Race, R. E. & Chesebro, B. Protease sensitivity and nuclease resistance of the scrapie agent propagated in vitro in neuroblastoma cells. J. Virol.65, 1031–1034 (1991). CASPubMedPubMed Central Google Scholar
McKinley, M. P., Bolton, D. C. & Prusiner, S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell35, 57–62 (1983). ArticleCASPubMed Google Scholar
Kuczius, T. & Groschup, M. H. Differences in proteinase K resistance and neuronal deposition of abnormal prion proteins characterize bovine spongiform encephalopathy (BSE) and scrapie strains. Mol. Med.5, 406–418 (1999). ArticleCASPubMedPubMed Central Google Scholar
Harris, D. A. et al. A transgenic model of a familial prion disease. Arch. Virol. Suppl. 103–112 (2000).
Post, K. et al. Rapid acquisition of β-sheet structure in the prion protein prior to multimer formation. Biol. Chem.379, 1307–1317 (1998). ArticleCASPubMed Google Scholar
Appel, T. R., Dumpitak, C., Matthiesen, U. & Riesner, D. Prion rods contain an inert polysaccharide scaffold. Biol. Chem.380, 1295–1306 (1999). ArticleCASPubMed Google Scholar
Bolton, D. C., Rudelli, R. D., Currie, J. R. & Bendheim, P. E. Copurification of Sp33-37 and scrapie agent from hamster brain prior to detectable histopathology and clinical disease. J. Gen. Virol.72, 2905–2913 (1991). ArticleCASPubMed Google Scholar
Manson, J. C. et al. A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J.18, 6855–6864 (1999). An interesting example of how a single amino acid change in PrP can affect pathogenesis in prion disease. ArticleCASPubMedPubMed Central Google Scholar
Lasmezas, C. I. et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science275, 402–405 (1997). ArticleCASPubMed Google Scholar
Collinge, J. et al. Transmission of fatal familial insomnia to laboratory animals. Lancet346, 569–570 (1995). ArticleCASPubMed Google Scholar
Manuelidis, L., Sklaviadis, T. & Manuelidis, E. E. Evidence suggesting that PrP is not the infectious agent in Creutzfeldt–Jakob disease. EMBO J.6, 341–347 (1987). ArticleCASPubMedPubMed Central Google Scholar
Tzaban, S. et al. Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry41, 12868–12875 (2002). ArticleCASPubMed Google Scholar
Liemann, S. & Glockshuber, R. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry38, 3258–3267 (1999). ArticleCASPubMed Google Scholar
Jarrett, J. T. & Lansbury, P. J. Seeding 'one-dimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell73, 1055–1058 (1993). ArticleCASPubMed Google Scholar
Vanik, D. L., Surewicz, K. A. & Surewicz, W. K. Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol. Cell14, 139–145 (2004). ArticleCASPubMed Google Scholar
Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science268, 880–884 (1995). ArticleCASPubMed Google Scholar
Wickner, R. B. et al. Prions of yeast as heritable amyloidoses. J. Struct. Biol.130, 310–322 (2000). ArticleCASPubMed Google Scholar
Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA98, 9295–9299 (2001). ArticleCASPubMedPubMed Central Google Scholar
Montrasio, F. et al. B lymphocyte-restricted expression of prion protein does not enable prion replication in prion protein knockout mice. Proc. Natl Acad. Sci. USA98, 4034–4037 (2001). ArticleCASPubMedPubMed Central Google Scholar
Telling, G. C. et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell83, 79–90 (1995). ArticleCASPubMed Google Scholar
Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature412, 739–743 (2001). ArticleCASPubMed Google Scholar
Priola, S. A. & Chesebro, B. A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J. Virol.69, 7754–7758 (1995). CASPubMedPubMed Central Google Scholar
Hunter, N. in Prion Diseases (eds Baker, H. F. & Ridley, R. M.) 211–221 (Humana Press, New Jersey, 1996). Book Google Scholar
Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl Acad. Sci. USA23, 23 (2002). Google Scholar
Windl, O. et al. Genetic basis of Creutzfeldt–Jakob disease in the United Kingdom: a systematic analysis of predisposing mutations and allelic variation in the PRNP gene. Hum. Genet.98, 259–264 (1996). ArticleCASPubMed Google Scholar
Peden, A. H., Head, M. W., Ritchie, D. L., Bell, J. E. & Ironside, J. W. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet364, 527–529 (2004). ArticlePubMed Google Scholar
Race, R. E., Fadness, L. H. & Chesebro, B. Characterization of scrapie infection in mouse neuroblastoma cells. J. Gen. Virol.68, 1391–1399 (1987). ArticlePubMed Google Scholar
Rubenstein, R., Carp, R. I. & Callahan, S. M. In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J. Gen. Virol.65, 2191–2198 (1984). ArticlePubMed Google Scholar
Schatzl, H. M. et al. A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J. Virol.71, 8821–8831 (1997). CASPubMedPubMed Central Google Scholar
Vorberg, I., Raines, A., Story, B. & Priola, S. A. Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J. Infect. Dis.189, 431–439 (2004). ArticleCASPubMed Google Scholar
Vilette, D. et al. Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc. Natl Acad. Sci. USA98, 4055–4059 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kloehn, P.-C., Stoltze, l., Flechsig, E., Enari, M. & Weissmann, C. A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc. Natl Acad. Sci. USA100, 11666–11671 (2003). ArticleCAS Google Scholar
Nishida, N. et al. Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J. Virol.74, 320–325 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J.15, 1255–1264 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kaneko, K. et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl Acad. Sci. USA94, 10069–10074 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kuczius, T., Haist, I. & Groschup, M. H. Molecular analysis of bovine spongiform encephalopathy and scrapie strain variation. J. Infect. Dis.178, 693–699 (1998). ArticleCASPubMed Google Scholar
Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature370, 471–474 (1994). First demonstration that PrPCcan be converted to PrPScin a cell-free system. ArticleCASPubMed Google Scholar
Saborio, G. P., Permanne, B. & Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature411, 810–813 (2001). ArticleCASPubMed Google Scholar
Deleault, N. R., Lucassen, R. W. & Supattapone, S. RNA molecules stimulate prion protein conversion. Nature425, 717–720 (2003). ArticleCASPubMed Google Scholar
Bruce, M. E., Fraser, H., McBride, P. A., Scott, J. R. & Dickinson, A. G. in Prion Diseases of Humans and Animals (eds Prusiner, S. B., Collinge, J., Powell, J. & Anderton, B.) 497–508 (Ellis Horwood, New York, London, 1992). Google Scholar
Bessen, R. A. & Marsh, R. F. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol.66, 2096–2101 (1992). First demonstration that different prion strains are associated with different forms of PrPSc. CASPubMedPubMed Central Google Scholar
Telling, G. C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science274, 2079–2082 (1996). ArticleCASPubMed Google Scholar
Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature383, 685–690 (1996). Provides biochemical evidence that the agents causing BSE and vCJD are related. ArticleCASPubMed Google Scholar
Safar, J. G. et al. Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nature Biotechnol.20, 1147–1150 (2002). ArticleCAS Google Scholar
Bellon, A. et al. Improved conformation-dependent immunoassay: suitability for human prion detection with enhanced sensitivity. J. Gen. Virol.84, 1921–1925 (2003). ArticleCASPubMed Google Scholar
Caughey, B. et al. Methods for studying prion protein (PrP) metabolism and the formation of protease-resistant PrP in cell culture and cell-free systems. An update. Mol. Biotechnol.13, 45–55 (1999). ArticleCASPubMed Google Scholar
Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature428, 323–8. (2004). Elegant demonstration that two different fibrillar conformations of a yeast protein generatedin vitroare propagated unchanged in yeast and underlie two different phenotypic strains. See also Ref. 76. ArticleCASPubMed Google Scholar
King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature428, 319–323 (2004). ArticleCASPubMed Google Scholar
Kimberlin, R. H., Cole, S. & Walker, C. A. Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J. Gen. Virol.68, 1875–1881 (1987). ArticlePubMed Google Scholar
DeArmond, S. J. et al. Selective neuronal targeting in prion disease. Neuron19, 1337–1348 (1997). ArticleCASPubMed Google Scholar
Miller, M. W., Williams, E. S., Hobbs, N. T. & Wolfe, L. L. Environmental sources of prion transmission in mule deer. Emerg. Infect. Dis.10, 1003–1006 (2004). ArticlePubMedPubMed Central Google Scholar
Pattison, I. H. in NINDB Monograph No. 2, Slow, Latent and Temperate Virus Infections (eds Gajdusek, D. C., Gibbs, C. J. & Alpers, M.) 249–257 (1965). Google Scholar
Hill, A. F. et al. Species-barrier-independent prion replication in apparently resistant species. Proc. Natl Acad. Sci. USA97, 10248–10253 (2000). ArticleCASPubMedPubMed Central Google Scholar
Race, R., Raines, A., Raymond, G. J., Caughey, B. & Chesebro, B. Long-term subclinical carrier state precedes scrapie replication and adaptation in a resistant species: analogies to bovine spongiform encephalopathy and variant Creutzfeldt–Jakob disease in humans. J. Virol.75, 10106–10112 (2001). ArticleCASPubMedPubMed Central Google Scholar
Asante, E. A. et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J.21, 6358–6366 (2002). ArticleCASPubMedPubMed Central Google Scholar
Scott, M. R. et al. Identification of a prion protein epitope modulating transmission of bovine spongiform encephalopathy prions to transgenic mice. Proc. Natl Acad. Sci. USA94, 14279–14284 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lloyd, S. E. et al. Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc. Natl Acad. Sci. USA98, 6279–6283 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stephenson, D. A. et al. Quantitative trait loci affecting prion incubation time in mice. Genomics69, 47–53 (2000). ArticleCASPubMed Google Scholar
Moreno, C. R., Lantier, F., Lantier, I., Sarradin, P. & Elsen, J. M. Detection of new quantitative trait loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics165, 2085–2091 (2003). CASPubMedPubMed Central Google Scholar
Manolakou, K. et al. Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc. Natl Acad. Sci. USA98, 7402–7407 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science264, 566–569 (1994). The seminal paper linking extra-chromosomal inheritance in yeast with the self-propagating conformational variant of a protein. ArticleCASPubMed Google Scholar
Wickner, R. B., Edskes, H. K., Roberts, B. T., Pierce, M. & Baxa, U. Prions of yeast as epigenetic phenomena: high protein 'copy number' inducing protein 'silencing'. Adv. Genet.46, 485–525 (2002). ArticleCASPubMed Google Scholar
Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell89, 811–819 (1997). Support for the seeding hypothesis. ArticleCASPubMed Google Scholar
Blättler, T. et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature389, 69–73 (1997). Shows that PrP is required not only for susceptibility to prion infection but also for prion transport through the organism. ArticlePubMed Google Scholar
Brandner, S. et al. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc. Natl Acad. Sci. USA93, 13148–13151 (1996). ArticleCASPubMedPubMed Central Google Scholar
Huang, F. P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. Migrating intestinal dendritic cells transport PrPSc from the gut. J. Gen. Virol.83, 267–271 (2002). ArticleCASPubMed Google Scholar
Klein, M. A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Med.4, 1429–1433 (1998). ArticleCASPubMed Google Scholar
Kitamoto, T., Muramoto, T., Mohri, S., Dohura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol.65, 6292–6295 (1991). CASPubMedPubMed Central Google Scholar
Mackay, F. & Browning, J. L. Turning off follicular dendritic cells. Nature395, 26–27 (1998). ArticleCASPubMed Google Scholar
Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science288, 1257–1259 (2000). ArticleCASPubMed Google Scholar
Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med.6, 719–720 (2000). ArticleCASPubMed Google Scholar
Mabbott, N. A., Young, J., McConnell, I. & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol.77, 6845–6854 (2003). ArticleCASPubMedPubMed Central Google Scholar
Glatzel, M., Heppner, F. L., Albers, K. M. & Aguzzi, A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron31, 25–34 (2001). ArticleCASPubMed Google Scholar
Race, R., Oldstone, M. & Chesebro, B. Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: role of prion protein expression in peripheral nerves and spleen. J. Virol.74, 828–833 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mallucci, G. R. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J.21, 202–210 (2002). ArticleCASPubMedPubMed Central Google Scholar
Büeler, H. et al. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol. Med.1, 19–30 (1994). ArticlePubMed Google Scholar
Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature379, 339–343 (1996). ArticleCASPubMed Google Scholar
Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science302, 871–874 (2003). ArticleCASPubMed Google Scholar
Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science, 1781–1785 (2002).
Ma, J. & Lindquist, S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science298, 1785–1788 (2002). ArticleCASPubMed Google Scholar
Drisaldi, B. et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J. Biol. Chem.278, 21732–21743 (2003). ArticleCASPubMed Google Scholar
Heller, U., Winklhofer, K. F., Heske, J., Reintjes, A. & Tatzelt, J. Post-translational import of the prion protein into the endoplasmic reticulum interferes with cell viability: a critical role for the putative transmembrane domain. J. Biol. Chem.278, 36139–36147 (2003). ArticleCASPubMed Google Scholar
Roucou, X., Guo, Q., Zhang, Y., Goodyer, C. G. & LeBlanc, A. C. Cytosolic prion protein is not toxic and protects against Bax-mediated cell death in human primary neurons. J. Biol. Chem.278, 40877–40881 (2003). ArticleCASPubMed Google Scholar
Hegde, R. S. et al. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature402, 822–826 (1999). ArticleCASPubMed Google Scholar
Hegde, R. S. et al. A transmembrane form of the prion protein in neurodegenerative disease. Science279, 827–834 (1998). ArticleCASPubMed Google Scholar
Lansbury, P. T. Jr. Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl Acad. Sci. USA96, 3342–3324 (1999). ArticleCASPubMedPubMed Central Google Scholar
Flechsig, E., Manson, J. C., Barron, R., Aguzzi, A. & Weissmann, C. in Prion Biology and Diseases (ed. Prusiner, S. B.) 373–434 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2004). Google Scholar
Tateishi, J., Kitamoto, T., Hoque, M. Z. & Furukawa, H. Experimental transmission of Creutzfeldt–Jakob disease and related diseases to rodents. Neurology46, 532–537 (1996). ArticleCASPubMed Google Scholar
Chiesa, R. et al. Molecular distinction between pathogenic and infectious properties of the prion protein. J. Virol.77, 7611–7622 (2003). Discusses the difference between a PrP proteinopathy and prion disease. ArticleCASPubMedPubMed Central Google Scholar
Goldfarb, L. G. et al. Transmissible familial Creutzfeldt–Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the Prnp gene. Proc. Natl Acad. Sci. USA88, 10926–10930 (1991). ArticleCASPubMedPubMed Central Google Scholar
Tateishi, J. & Kitamoto, T. Inherited prion diseases and transmission to rodents. Brain Pathol.5, 53–59 (1995). ArticleCASPubMed Google Scholar
True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature407, 477–483 (2000). ArticleCASPubMed Google Scholar
Chiti, F. et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl Acad. Sci. USA96, 3590–3594 (1999). ArticleCASPubMedPubMed Central Google Scholar