Weibull, C. The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. J. Bacteriol.66, 688–695 (1953). CASPubMedPubMed Central Google Scholar
Weidel, W. & Pelzer, H. Bagshaped macromolecules — a new outlook on bacterial cell walls. Adv. Enzymol. Relat. Areas. Mol. Biol.26, 193–232 (1964). The first comprehensive review of the bacterial cell wall, this paper introduced now-standard nomenclature such as 'murein' and 'sacculus'. Google Scholar
Weidel, W., Frank, H. & Martin, H. H. The rigid layer of the cell wall of Escherichia coli strain B. J. Gen. Microbiol.22, 158–166 (1960). CASPubMed Google Scholar
Schwarz, U. & Leutgeb, W. Morphogenetic aspects of murein structure and biosynthesis. J. Bacteriol.106, 588–595 (1971). CASPubMedPubMed Central Google Scholar
Spratt, B. G. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Natl Acad. Sci. USA72, 2999–3003 (1975). CASPubMedPubMed Central Google Scholar
Tamaki, S., Matsuzawa, H. & Matsuhashi, M. Cluster of mrdA and mrdB genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli. J. Bacteriol.141, 52–57 (1980). CASPubMedPubMed Central Google Scholar
Nelson, D. E. & Young, K. D. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J. Bacteriol.182, 1714–1721 (2000). CASPubMedPubMed Central Google Scholar
Meberg, B. M., Paulson, A. L., Priyadarshini, R. & Young, K. D. Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. J. Bacteriol.186, 8326–8336 (2004). CASPubMedPubMed Central Google Scholar
Karamata, D., McConnell, M. & Rogers, H. J. Mapping of rod mutants of Bacillus subtilis. J. Bacteriol.111, 73–79 (1972). CASPubMedPubMed Central Google Scholar
Rogers, H. J., McConnell, M. & Burdett, I. D. The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. J. Gen. Microbiol.61, 155–171 (1970). CASPubMed Google Scholar
Wagner, P. M. & Stewart, G. C. Role and expression of the Bacillus subtilis rodC operon. J. Bacteriol.173, 4341–4346 (1991). CASPubMedPubMed Central Google Scholar
Levin, P. A., Margolis, P. S., Setlow, P., Losick, R. & Sun, D. Identification of Bacillus subtilis genes for septum placement and shape determination. J. Bacteriol.174, 6717–6728 (1992). CASPubMedPubMed Central Google Scholar
Doi, M. et al. Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J. Bacteriol.170, 4619–4624 (1988). Identification of the MreB protein and its gene sequence, connecting it with cell-shape determination. CASPubMedPubMed Central Google Scholar
Wachi, M. et al. Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol.169, 4935–4940 (1987). CASPubMedPubMed Central Google Scholar
Varley, A. W. & Stewart, G. C. The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (minCD) and cell shape (mreBCD) determinants. J. Bacteriol.174, 6729–6742 (1992). CASPubMedPubMed Central Google Scholar
Matsuzawa, H., Hayakawa, K., Sato, T. & Imahori, K. Characterization and genetic analysis of a mutant of Escherichia coli K-12 with rounded morphology. J. Bacteriol.115, 436–442 (1973). CASPubMedPubMed Central Google Scholar
van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature413, 39–44 (2001). Shows the X-ray crystal structure of MreB as well as itsin vitrofilament formation, comparing it to actin. CASPubMed Google Scholar
Jones, L. J., Carballido-Lopez, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell104, 913–922 (2001). Reveals the helical structures formed by MreB and Mbl withinB. subtiliscells, indicating a cytoskeletal function. CASPubMed Google Scholar
Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA89, 7290–7294 (1992). CASPubMedPubMed Central Google Scholar
Kruse, T., Møller-Jensen, J., Løbner-Olesen, A. & Gerdes, K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J.22, 5283–5292 (2003). CASPubMedPubMed Central Google Scholar
Figge, R. M., Divakaruni, A. V. & Gober, J. W. MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol.51, 1321–1332 (2004). CASPubMed Google Scholar
Shih, Y. L., Le, T. & Rothfield, L. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl Acad. Sci. USA100, 7865–7870 (2003). CASPubMedPubMed Central Google Scholar
Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell115, 705–713 (2003). Presents crescentin as a cell shape determinant inC. crescentusand as an intermediate filament-like protein. CASPubMed Google Scholar
Mobley, H. L., Koch, A. L., Doyle, R. J. & Streips, U. N. Insertion and fate of the cell wall in Bacillus subtilis. J. Bacteriol.158, 169–179 (1984). CASPubMedPubMed Central Google Scholar
Daniel, R. A. & Errington, J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell113, 767–776 (2003). Using fluorescent vancomycin staining inB. subtilis, this study shows helical patterns of peptidoglycan insertion in the presence of Mbl and polar peptidoglycan insertion in the absence of Mbl. CASPubMed Google Scholar
De Pedro, M. A., Schwarz, H. & Koch, A. L. Patchiness of murein insertion into the sidewall of Escherichia coli. Microbiology149, 1753–1761 (2003). CASPubMed Google Scholar
Schlaeppi, J. M., Schaefer, O. & Karamata, D. Cell wall and DNA cosegregation in Bacillus subtilis studied by electron microscope autoradiography. J. Bacteriol.164, 130–135 (1985). CASPubMedPubMed Central Google Scholar
Schlaeppi, J. M., Pooley, H. M. & Karamata, D. Identification of cell wall subunits in Bacillus subtilis and analysis of their segregation during growth. J. Bacteriol.149, 329–337 (1982). CASPubMedPubMed Central Google Scholar
Costa, K. et al. The morphological transition of Helicobacter pylori cells from spiral to coccoid is preceded by a substantial modification of the cell wall. J. Bacteriol.181, 3710–3715 (1999). CASPubMedPubMed Central Google Scholar
Henriques, A. O., Glaser, P., Piggot, P. J. & Moran, C. P. Jr. Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol.28, 235–247 (1998). CASPubMed Google Scholar
Labischinski, H., Barnickel, G., Bradaczek, H. & Giesbrecht, P. On the secondary and tertiary structure of murein. Low and medium-angle X-ray evidence against chitin-based conformations of bacterial peptidoglycan. Eur. J. Biochem.95, 147–155 (1979). CASPubMed Google Scholar
Bhavsar, A. P., Erdman, L. K., Schertzer, J. W. & Brown, E. D. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. J. Bacteriol.186, 7865–7873 (2004). CASPubMedPubMed Central Google Scholar
Braun, V. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim. Biophys. Acta415, 335–377 (1975). CASPubMed Google Scholar
Braun, V. & Rehn, K. Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. Eur. J. Biochem.10, 426–438 (1969). CASPubMed Google Scholar
Belaaouaj, A., Kim, K. S. & Shapiro, S. D. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science289, 1185–1188 (2000). CASPubMed Google Scholar
Ohara, M., Wu, H. C., Sankaran, K. & Rick, P. D. Identification and characterization of a new lipoprotein, NlpI, in Escherichia coli K-12. J. Bacteriol.181, 4318–4325 (1999). CASPubMedPubMed Central Google Scholar
Sonntag, I., Schwarz, H., Hirota, Y. & Henning, U. Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J. Bacteriol.136, 280–285 (1978). CASPubMedPubMed Central Google Scholar
Vollmer, W. & Höltje, J. V. The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s)? J. Bacteriol.186, 5978–5987 (2004). Reviews the main hypotheses regarding the orientation of glycan strands in Gram-negative peptidoglycan, discussing relevant experimental data. CASPubMedPubMed Central Google Scholar
Yao, X., Jericho, M., Pink, D. & Beveridge, T. Thickness and elasticity of Gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol.181, 6865–6875 (1999). Uses AFM as a means to directly measure the mechanical properties of isolated peptidoglycan sacculi. CASPubMedPubMed Central Google Scholar
Dmitriev, B. A., Toukach, F. V., Holst, O., Rietschel, E. T. & Ehlers, S. Tertiary structure of Staphylococcus aureus cell wall murein. J. Bacteriol.186, 7141–7148 (2004). CASPubMedPubMed Central Google Scholar
Dmitriev, B. A. et al. Tertiary structure of bacterial murein: the scaffold model. J. Bacteriol.185, 3458–3468 (2003). CASPubMedPubMed Central Google Scholar
Koch, A. L. & Doyle, R. J. Inside-to-outside growth and turnover of the wall of Gram-positive rods. J. Theor. Biol.117, 137–157 (1985). CASPubMed Google Scholar
Labischinski, H., Goodell, E. W., Goodell, A. & Hochberg, M. L. Direct proof of a “more-than-single-layered” peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J. Bacteriol.173, 751–756 (1991). CASPubMedPubMed Central Google Scholar
Park, J. T. & Burman, L. G. Elongation of the murein sacculus of Escherichia coli. Ann. Inst. Pasteur. Microbiol.136A, 51–58 (1985). CASPubMed Google Scholar
Höltje, J. -V. in Bacterial Growth and Lysis (eds de Pedro, M. A., Höltje, J.-V., Löffelhardt, W.) 419–426 (Plenum Press, New York, 1993). Google Scholar
Doyle, R. J. & Marquis, R. E. Elastic, flexible peptidoglycan and bacterial cell wall properties. Trends Microbiol.2, 57–60 (1994). CASPubMed Google Scholar
Boulbitch, A., Quinn, B. & Pink, D. Elasticity of the rod-shaped Gram-negative eubacteria. Phys. Rev. Lett.85, 5246–5249 (2000). CASPubMed Google Scholar
de Pedro, M. A., Quintela, J. C., Höltje, J. V. & Schwarz, H. Murein segregation in Escherichia coli. J. Bacteriol.179, 2823–2834 (1997). Localizes regions of peptidoglycan synthesis inE. coliusingD-cysteine labelling. CASPubMedPubMed Central Google Scholar
Pinho, M. G. & Errington, J. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol. Microbiol.50, 871–881 (2003). CASPubMed Google Scholar
Morlot, C., Zapun, A., Dideberg, O. & Vernet, T. Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol. Microbiol.50, 845–855 (2003). CASPubMed Google Scholar
Cole, R. M. & Hahn, J. J. Cell wall replication in Streptococcus pyogenes. Science135, 722–724 (1962). CASPubMed Google Scholar
Briles, E. B. & Tomasz, A. Radioautographic evidence for equatorial wall growth in a Gram-positive bacterium. Segregation of choline-3H-labeled teichoic acid. J. Cell. Biol.47, 786–790 (1970). CASPubMedPubMed Central Google Scholar
de Pedro, M. A., Young, K. D., Höltje, J. V. & Schwarz, H. Branching of Escherichia coli cells arises from multiple sites of inert peptidoglycan. J. Bacteriol.185, 1147–1152 (2003). CASPubMedPubMed Central Google Scholar
Graumann, P. L. Cytoskeletal elements in bacteria. Curr. Opin. Microbiol.7, 565–571 (2004). CASPubMed Google Scholar
Møller-Jensen, J. & Löwe, J. Increasing complexity of the bacterial cytoskeleton. Curr. Opin. Cell. Biol.17, 75–81 (2005). PubMed Google Scholar
Bi, E. F. & Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature354, 161–164 (1991). Identifies the FtsZ ring at cell-division sites, implicating it as a possible cytoskeletal element. CASPubMed Google Scholar
Mukherjee, A., Dai, K. & Lutkenhaus, J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl Acad. Sci. USA90, 1053–1057 (1993). CASPubMedPubMed Central Google Scholar
de Boer, P., Crossley, R. & Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature359, 254–256 (1992). CASPubMed Google Scholar
RayChaudhuri, D. & Park, J. T. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature359, 251–254 (1992). CASPubMed Google Scholar
Bramhill, D. & Thompson, C. M. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl Acad. Sci. USA91, 5813–5817 (1994). CASPubMedPubMed Central Google Scholar
Mukherjee, A. & Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol.176, 2754–2758 (1994). CASPubMedPubMed Central Google Scholar
Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature391, 199–203 (1998). CASPubMed Google Scholar
Löwe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature391, 203–206 (1998). PubMed Google Scholar
Errington, J., Daniel, R. A. & Scheffers, D. J. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev.67, 52–65 (2003). CASPubMedPubMed Central Google Scholar
Addinall, S. G. & Lutkenhaus, J. FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol. Microbiol.22, 231–237 (1996). CASPubMed Google Scholar
Varma, A. & Young, K. D. FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli. J. Bacteriol.186, 6768–6774 (2004). CASPubMedPubMed Central Google Scholar
Bi, E. & Lutkenhaus, J. Isolation and characterization of ftsZ alleles that affect septal morphology. J. Bacteriol.174, 5414–5423 (1992). CASPubMedPubMed Central Google Scholar
Anderson, D. E., Gueiros-Filho, F. J. & Erickson, H. P. Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J. Bacteriol.186, 5775–5781 (2004). CASPubMedPubMed Central Google Scholar
Thanedar, S. & Margolin, W. FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr. Biol.14, 1167–1173 (2004). CASPubMedPubMed Central Google Scholar
Abhayawardhane, Y. & Stewart, G. C. Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J. Bacteriol.177, 765–773 (1995). CASPubMedPubMed Central Google Scholar
Defeu Soufo, H. J. & Graumann, P. L. Dynamic movement of actin-like proteins within bacterial cells. EMBO Rep.5, 789–794 (2004). CASPubMedPubMed Central Google Scholar
Defeu Soufo, H. J. & Graumann, P. L. Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr. Biol.13, 1916–1920 (2003). CAS Google Scholar
Carballido-Lopez, R. & Errington, J. The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev. Cell.4, 19–28 (2003). CASPubMed Google Scholar
Wortinger, M. A., Quardokus, E. M. & Brun, Y. V. Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus. Mol. Microbiol.29, 963–973 (1998). CASPubMed Google Scholar
Vollmer, W., von Rechenberg, M. & Höltje, J. V. Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J. Biol. Chem.274, 6726–6734 (1999). CASPubMed Google Scholar
Schiffer, G. & Höltje, J. V. Cloning and characterization of PBP 1C, a third member of the multimodular class A penicillin-binding proteins of Escherichia coli. J. Biol. Chem.274, 32031–32039 (1999). CASPubMed Google Scholar
Romeis, T. & Höltje, J. V. Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J. Biol. Chem.269, 21603–21607 (1994). CASPubMed Google Scholar
Alaedini, A. & Day, R. A. Identification of two penicillin-binding multienzyme complexes in Haemophilus influenzae. Biochem. Biophys. Res. Commun.264, 191–195 (1999). Presents the first experimental evidence that there are multiple peptidoglycan synthesis complexes that differ in the transglycosylase present. CASPubMed Google Scholar
Weiss, D. S. et al. Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Mol. Microbiol.25, 671–681 (1997). CASPubMed Google Scholar
Iwaya, M., Jones, C. W., Khorana, J. & Strominger, J. L. Mapping of the mecillinam-resistant, round morphological mutants of Escherichia coli. J. Bacteriol.133, 196–202 (1978). CASPubMedPubMed Central Google Scholar
Boyle, D. S., Khattar, M. M., Addinall, S. G., Lutkenhaus, J. & Donachie, W. D. ftsW is an essential cell-division gene in Escherichia coli. Mol. Microbiol.24, 1263–1273 (1997). CASPubMed Google Scholar
Ikeda, M. et al. Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J. Bacteriol.171, 6375–6378 (1989). CASPubMedPubMed Central Google Scholar
Hara, H., Yasuda, S., Horiuchi, K. & Park, J. T. A promoter for the first nine genes of the Escherichia coli mra cluster of cell division and cell envelope biosynthesis genes, including ftsI and ftsW. J. Bacteriol.179, 5802–5811 (1997). CASPubMedPubMed Central Google Scholar
Matsuzawa, H. et al. Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon. J. Bacteriol.171, 558–560 (1989). CASPubMedPubMed Central Google Scholar
Ishino, F. et al. Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. J. Biol. Chem.261, 7024–7031 (1986). CASPubMed Google Scholar
Mercer, K. L. & Weiss, D. S. The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J. Bacteriol.184, 904–912 (2002). CASPubMedPubMed Central Google Scholar
Lee, J. C. & Stewart, G. C. Essential nature of the mreC determinant of Bacillus subtilis. J. Bacteriol.185, 4490–4498 (2003). CASPubMedPubMed Central Google Scholar
Kruse, T., Bork-Jensen, J. & Gerdes, K. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol.55, 78–89 (2005). CASPubMed Google Scholar
Defeu Soufo, H. J. & Graumann, P. L. Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization. BMC Cell Biol.6, 10 (2005). PubMedPubMed Central Google Scholar
Scheffers, D. J., Jones, L. J. & Errington, J. Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol.51, 749–764 (2004). CASPubMed Google Scholar
Datta, P., Dasgupta, A., Bhakta, S. & Basu, J. Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. J. Biol. Chem.277, 24983–24987 (2002). CASPubMed Google Scholar
Nelson, D. E. & Young, K. D. Contributions of PBP 5 and DD-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J. Bacteriol.183, 3055–3064 (2001). CASPubMedPubMed Central Google Scholar
McPherson, D. C. & Popham, D. L. Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J. Bacteriol.185, 1423–1431 (2003). CASPubMedPubMed Central Google Scholar
Firtel, M., Henderson, G. & Sokolov, I. Nanosurgery: observation of peptidoglycan strands in Lactobacillus helveticus cell walls. Ultramicroscopy101, 105–109 (2004). CASPubMed Google Scholar
Chen, Y. & Erickson, H. P. Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J. Biol. Chem.280, 22549–22554 (2005). CASPubMed Google Scholar
Esue, O., Cordero, M., Wirtz, D. & Tseng, Y. The assembly of MreB, a prokaryotic homolog of actin. J. Biol. Chem.280, 2628–2635 (2005). CASPubMed Google Scholar
Umeda, A. & Amako, K. Growth of the surface of Corynebacterium diphtheriae. Microbiol. Immunol.27, 663–671 (1983). CASPubMed Google Scholar
Motaleb, M. A. et al. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc. Natl Acad. Sci. USA97, 10899–10904 (2000). CASPubMedPubMed Central Google Scholar
Gitai, Z., Dye, N. A., Reisenauer, A., Wachi, M. & Shapiro, L. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell120, 329–341 (2005). Provides genetic evidence that the drug A22 targets MreB inC. crescentus. CASPubMed Google Scholar
Trachtenberg, S. Mollicutes-wall-less bacteria with internal cytoskeletons. J. Struct. Biol.124, 244–256 (1998). CASPubMed Google Scholar
Kessel, M., Peleg, I., Muhlrad, A. & Kahane, I. Cytoplasmic helical structure associated with Acholeplasma laidlawii. J. Bacteriol.147, 653–659 (1981). CASPubMedPubMed Central Google Scholar
Hegermann, J., Herrmann, R. & Mayer, F. Cytoskeletal elements in the bacterium Mycoplasma pneumoniae. Naturwissenschaften89, 453–458 (2002). CASPubMed Google Scholar
Williamson, D. L., Renaudin, J. & Bove, J. M. Nucleotide sequence of the Spiroplasma citri fibril protein gene. J. Bacteriol.173, 4353–4362 (1991). CASPubMedPubMed Central Google Scholar
Kürner, J., Frangakis, A. S. & Baumeister, W. Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science307, 436–438 (2005). PubMed Google Scholar
Trachtenberg, S. & Gilad, R. A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3. Mol. Microbiol.41, 827–848 (2001). CASPubMed Google Scholar
Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science270, 397–403 (1995). CASPubMed Google Scholar
Wang, X. & Lutkenhaus, J. Characterization of the ftsZ gene from Mycoplasma pulmonis, an organism lacking a cell wall. J. Bacteriol.178, 2314–2319 (1996). CASPubMedPubMed Central Google Scholar
Löwe, J., van den Ent, F. & Amos, L. A. Molecules of the bacterial cytoskeleton. Annu. Rev. Biophys. Biomol. Struct.33, 177–198 (2004). PubMed Google Scholar
Ishino, F., Mitsui, K., Tamaki, S. & Matsuhashi, M. Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem. Biophys. Res. Commun.97, 287–293 (1980). CASPubMed Google Scholar
Nakagawa, J., Tamaki, S., Tomioka, S. & Matsuhashi, M. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J. Biol. Chem.259, 13937–13946 (1984). CASPubMed Google Scholar
Spratt, B. G. & Pardee, A. B. Penicillin-binding proteins and cell shape in E. coli. Nature254, 516–517 (1975). CASPubMed Google Scholar
Adam, M. et al. The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate. J. Bacteriol.179, 6005–6009 (1997). CASPubMedPubMed Central Google Scholar
Spratt, B. G. Temperature-sensitive cell division mutants of Escherichia coli with thermolabile penicillin-binding proteins. J. Bacteriol.131, 293–305 (1977). CASPubMedPubMed Central Google Scholar
Korat, B., Mottl, H. & Keck, W. Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol. Microbiol.5, 675–684 (1991). CASPubMed Google Scholar
Broome-Smith, J. K., Ioannidis, I., Edelman, A. & Spratt, B. G. Nucleotide sequences of the penicillin-binding protein 5 and 6 genes of Escherichia coli. Nucleic Acids Res.16, 1617 (1988). CASPubMedPubMed Central Google Scholar
Baquero, M. R., Bouzon, M., Quintela, J. C., Ayala, J. A. & Moreno, F. dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with DD-carboxypeptidase activity. J. Bacteriol.178, 7106–7111 (1996). CASPubMedPubMed Central Google Scholar
Romeis, T. & Höltje, J. V. Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. Eur. J. Biochem.224, 597–604 (1994). CASPubMed Google Scholar