Campylobacter jejuni: molecular biology and pathogenesis (original) (raw)
Szewzyk, U., Szewzyk, R., Manz, W. & Schleifer, K. H. Microbiological safety of drinking water. Annu. Rev. Microbiol.54, 81–127 (2000). ArticleCASPubMed Google Scholar
Axelsson-Olsson, D., Waldenstrom, J., Broman, T., Olsen, B. & Holmberg, M. Protozoan Acanthamoeba polyphaga as a potential reservoir for Campylobacter jejuni. Appl. Environ. Microbiol.71, 987–992 (2005). ArticleCASPubMedPubMed Central Google Scholar
Blaser, M. J., LaForce, F. M., Wilson, N. A. & Wang, W. L. Reservoirs for human campylobacteriosis. J. Infect. Dis.141, 665–669 (1980). ArticleCASPubMed Google Scholar
Ruiz-Palacios, G. M., Escamilla, E. & Torres, N. Experimental Campylobacter diarrhea in chickens. Infect. Immun.34, 250–255 (1981). CASPubMedPubMed Central Google Scholar
Fox, J. G., Ackerman, J. I., Taylor, N., Claps, M. & Murphy, J. C. Campylobacter jejuni infection in the ferret: an animal model of human campylobacteriosis. Am. J. Vet. Res.48, 85–90 (1987). CASPubMed Google Scholar
Yrios, J. W. & Balish, E. Colonization and pathogenesis of Campylobacter spp. in athymic and euthymic germfree mice. Prog. Clin. Biol. Res.181, 199–202 (1985). CASPubMed Google Scholar
Yrios, J. W. & Balish, E. Immune response of athymic and euthymic germfree mice to Campylobacter spp. Infect. Immun.54, 339–346 (1986). CASPubMedPubMed Central Google Scholar
Yrios, J. W. & Balish, E. Colonization and infection of athymic and euthymic germfree mice by Campylobacter jejuni and Campylobacter fetus subsp. fetus. Infect. Immun.53, 378–383 (1986). CASPubMedPubMed Central Google Scholar
Yrios, J. W. & Balish, E. Pathogenesis of Campylobacter spp. in athymic and euthymic germfree mice. Infect. Immun.53, 384–392 (1986). CASPubMedPubMed Central Google Scholar
Fox, J. G. et al. Gastroenteritis in NF-κB-deficient mice is produced with wild-type Campylobacter jejuni but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with both strains. Infect. Immun.72, 1116–1125 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mansfield, L. S. et al. C57BL/6 and congenic interleukin-10-deficient mice can serve as models of Campylobacter jejuni colonization and enteritis. Infect. Immun.75, 1099–1115 (2007). ArticleCASPubMed Google Scholar
Watson, R. O., Novik, V., Hofreuter, D., Lara-Tejero, M. & Galan, J. E. A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect. Immun.75, 1994–2003 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fouts, D. E. et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol.3, e15 (2005). ArticleCASPubMedPubMed Central Google Scholar
Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403, 665–668 (2000). This paper presented the firstC. jejunigenome sequence by using strain 11168 as the source for DNA-sequence analysis. ArticleCASPubMed Google Scholar
Bacon, D. J. et al. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect. Immun.70, 6242–6250 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gundogdu, O. et al. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics8, 162 (2007). Reannotated the 11168 genome of theC. jejunigenome sequence (presented in reference 15). ArticleCASPubMedPubMed Central Google Scholar
Hendrixson, D. R., Akerley, B. J. & DiRita, V. J. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol. Microbiol.40, 214–224 (2001). ArticleCASPubMed Google Scholar
Hendrixson, D. R. & DiRita, V. J. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol.52, 471–484 (2004). Work reported in this paper included a signature-tagged mutagenesis screen to identify genes that have key roles inC. jejunicolonization. ArticleCASPubMed Google Scholar
Hendrixson, D. R. & DiRita, V. J. Transcription of σ−54-dependent but not σ−28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol. Microbiol.50, 687–702 (2003). ArticleCASPubMed Google Scholar
Colegio, O. R., Griffin, T. J., Grindley, N. D. & Galan, J. E. In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J. Bacteriol.183, 2384–2388 (2001). ArticleCASPubMedPubMed Central Google Scholar
Golden, N. J., Camilli, A. & Acheson, D. W. Random transposon mutagenesis of Campylobacter jejuni. Infect. Immun.68, 5450–5453 (2000). ArticleCASPubMedPubMed Central Google Scholar
Grant, A. J. et al. Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl. Environ. Microbiol.71, 8031–8041 (2005). ArticleCASPubMedPubMed Central Google Scholar
Carrillo, C. D. et al. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem.279, 20327–20338 (2004). ArticleCASPubMed Google Scholar
Dorrell, N. et al. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res.11, 1706–1715 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gaynor, E. C., Wells, D. H., MacKichan, J. K. & Falkow, S. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol. Microbiol.56, 8–27 (2005). Determined the necessity of the stringent response for pathogenic and, potentially, transmission traits forC. jejuni. ArticleCASPubMed Google Scholar
Linton, D. et al. Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol. Microbiol.37, 501–514 (2000). ArticleCASPubMed Google Scholar
Gilbert, M. et al. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J. Biol. Chem.277, 327–337 (2002). Described the spectrum of genetic mechanisms that lead to the high level of variation in LOS structure seen inC. jejuni. ArticleCASPubMed Google Scholar
Guerry, P. et al. Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect. Immun.70, 787–793 (2002). ArticleCASPubMedPubMed Central Google Scholar
Karlyshev, A. V., Linton, D., Gregson, N. A. & Wren, B. W. A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology148, 473–480 (2002). ArticleCASPubMed Google Scholar
Karlyshev, A. V., Ketley, J. M. & Wren, B. W. The Campylobacter jejuni glycome. FEMS Microbiol. Rev.29, 377–390 (2005). CASPubMed Google Scholar
de Boer, P. et al. Generation of Campylobacter jejuni genetic diversity in vivo. Mol. Microbiol.44, 351–359 (2002). ArticleCASPubMed Google Scholar
Wilson, D. L. et al. Variation of the natural transformation frequency of Campylobacter jejuni in liquid shake culture. Microbiology149, 3603–3615 (2003). ArticleCASPubMed Google Scholar
Avrain, L., Vernozy-Rozand, C. & Kempf, I. Evidence for natural horizontal transfer of tetO gene between Campylobacter jejuni strains in chickens. J. Appl. Microbiol.97, 134–140 (2004). ArticleCASPubMed Google Scholar
Wiesner, R. S., Hendrixson, D. R. & DiRita, V. J. Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J. Bacteriol.185, 5408–5418 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fry, B. N. et al. The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect. Immun.68, 2594–2601 (2000). ArticleCASPubMedPubMed Central Google Scholar
Larsen, J. C., Szymanski, C. & Guerry, P. _N_-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J. Bacteriol.186, 6508–6514 (2004). ArticleCASPubMedPubMed Central Google Scholar
Takata, T., Ando, T., Israel, D. A., Wassenaar, T. M. & Blaser, M. J. Role of dprA in transformation of Campylobacter jejuni. FEMS Microbiol. Lett.252, 161–168 (2005). ArticleCASPubMed Google Scholar
Nachamkin, I. Chronic effects of Campylobacter infection. Microbes Infect.4, 399–403 (2002). ArticlePubMed Google Scholar
Hughes, R. Campylobacter jejuni in Guillain–Barre syndrome. Lancet Neurol.3, 644 (2004). ArticlePubMed Google Scholar
Komagamine, T. & Yuki, N. Ganglioside mimicry as a cause of Guillain–Barre syndrome. CNS Neurol. Disord. Drug Targets5, 391–400 (2006). ArticleCASPubMed Google Scholar
Yu, R. K., Usuki, S. & Ariga, T. Ganglioside molecular mimicry and its pathological roles in Guillain–Barre syndrome and related diseases. Infect. Immun.74, 6517–6527 (2006). ArticleCASPubMedPubMed Central Google Scholar
Karlyshev, A. V., Linton, D., Gregson, N. A., Lastovica, A. J. & Wren, B. W. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol. Microbiol.35, 529–541 (2000). ArticleCASPubMed Google Scholar
St Michael, F. et al. The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur. J. Biochem.269, 5119–5136 (2002). ArticleCASPubMed Google Scholar
Szymanski, C. M. et al. Detection of conserved _N_-linked glycans and phase-variable lipooligosaccharides and capsules from Campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J. Biol. Chem.278, 24509–24520 (2003). ArticleCASPubMed Google Scholar
Gilbert, M., Mandrell, R. E., Parker, C. T., Li, J. & Vinogradov, E. Structural analysis of the capsular polysaccharide from Campylobacter jejuni RM1221. Chembiochem.8, 625–631 (2007). ArticleCASPubMed Google Scholar
McNally, D. J. et al. The HS:19 serostrain of Campylobacter jejuni has a hyaluronic acid-type capsular polysaccharide with a nonstoichiometric sorbose branch and _O_-methyl phosphoramidate group. FEBS J.273, 3975–3989 (2006). ArticleCASPubMed Google Scholar
McNally, D. J. et al. The HS:1 serostrain of Campylobacter jejuni has a complex teichoic acid-like capsular polysaccharide with nonstoichiometric fructofuranose branches and _O_-methyl phosphoramidate groups. FEBS J.272, 4407–4422 (2005). ArticleCASPubMed Google Scholar
Karlyshev, A. V. et al. Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol. Microbiol.55, 90–103 (2005). ArticleCASPubMed Google Scholar
Bacon, D. J. et al. A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol. Microbiol.40, 769–777 (2001). ArticleCASPubMed Google Scholar
Bachtiar, B. M., Coloe, P. J. & Fry, B. N. Knockout mutagenesis of the kpsE gene of Campylobacter jejuni 81116 and its involvement in bacterium–host interactions. FEMS Immunol. Med. Microbiol.49, 149–154 (2007). ArticleCASPubMed Google Scholar
Jones, M. A. et al. Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect. Immun.72, 3769–3776 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jagannathan, A., Constantinidou, C. & Penn, C. W. Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol.183, 2937–2942 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wosten, M. M., Wagenaar, J. A. & van Putten, J. P. The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J. Biol. Chem.279, 16214–16222 (2004). ArticleCASPubMed Google Scholar
Hendrixson, D. R. A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol. Microbiol.61, 1646–1659 (2006). ArticleCASPubMed Google Scholar
Sommerlad, S. M. & Hendrixson, D. R. Analysis of the roles of FlgP and FlgQ in flagellar motility of Campylobacter jejuni. J. Bacteriol.189, 179–186 (2007). ArticleCASPubMed Google Scholar
Marchant, J., Wren, B. & Ketley, J. Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol.10, 155–159 (2002). ArticleCASPubMed Google Scholar
Baker, M. D., Wolanin, P. M. & Stock, J. B. Signal transduction in bacterial chemotaxis. Bioessays28, 9–22 (2006). ArticleCASPubMed Google Scholar
Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol.5, 1024–1037 (2004). ArticleCAS Google Scholar
Hugdahl, M. B., Beery, J. T. & Doyle, M. P. Chemotactic behavior of Campylobacter jejuni. Infect. Immun.56, 1560–1566 (1988). CASPubMedPubMed Central Google Scholar
Yao, R., Burr, D. H. & Guerry, P. CheY-mediated modulation of Campylobacter jejuni virulence. Mol. Microbiol.23, 1021–1031 (1997). ArticleCASPubMed Google Scholar
Fredrick, K. L. & Helmann, J. D. Dual chemotaxis signaling pathways in Bacillus subtilis: a σ-D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J. Bacteriol.176, 2727–2735 (1994). ArticleCASPubMedPubMed Central Google Scholar
Pittman, M. S., Goodwin, M. & Kelly, D. J. Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. Microbiology147, 2493–2504 (2001). ArticleCASPubMed Google Scholar
Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J. & Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol.32, 1022–1030 (1999). Identified the genes that encode theO-linked glycosylation system ofC. jejuni, which is responsible for glycosylation of flagellin. ArticleCASPubMed Google Scholar
Thibault, P. et al. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem.276, 34862–34870 (2001). ArticleCASPubMed Google Scholar
Chou, W. K., Dick, S., Wakarchuk, W. W. & Tanner, M. E. Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J. Biol. Chem.280, 35922–35928 (2005). ArticleCASPubMed Google Scholar
Guerry, P. et al. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol.60, 299–311 (2006). ArticleCASPubMedPubMed Central Google Scholar
McNally, D. J. et al. Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J. Biol. Chem.281, 18489–18498 (2006). ArticleCASPubMed Google Scholar
McNally, D. J. et al. Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. J. Biol. Chem.282, 14463–14475 (2007). ArticleCASPubMed Google Scholar
Goon, S., Kelly, J. F., Logan, S. M., Ewing, C. P. & Guerry, P. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol.50, 659–671 (2003). ArticleCASPubMed Google Scholar
Glover, K. J., Weerapana, E. & Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic _N_-linked glycosylation. Proc. Natl Acad. Sci. USA102, 14255–14259 (2005). ArticleCASPubMedPubMed Central Google Scholar
Glover, K. J., Weerapana, E., Numao, S. & Imperiali, B. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem. Biol.12, 1311–1315 (2005). ArticleCASPubMedPubMed Central Google Scholar
Weerapana, E., Glover, K. J., Chen, M. M. & Imperiali, B. Investigating bacterial _N_-linked glycosylation: synthesis and glycosyl acceptor activity of the undecaprenyl pyrophosphate-linked bacillosamine. J. Am. Chem. Soc.127, 13766–13767 (2005). ArticleCASPubMedPubMed Central Google Scholar
Glover, K. J., Weerapana, E., Chen, M. M. & Imperiali, B. Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the _Campylobacter jejuni N_-linked glycosylation pathway. Biochemistry45, 5343–5350 (2006). ArticleCASPubMed Google Scholar
Kowarik, M. et al. _N_-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science314, 1148–1150 (2006). ArticleCASPubMed Google Scholar
Olivier, N. B., Chen, M. M., Behr, J. R. & Imperiali, B. In vitro biosynthesis of UDP-N, _N_-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry45, 13659–13669 (2006). ArticleCASPubMed Google Scholar
Wacker, M. et al. _N_-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli.Science298, 1790–1793 (2002). Determined that thepgllocus ofC. jejuniencodes anN-linked protein glycosylation system, the first described in bacteria, and moved thepgllocus intoE. coli, allowing for theN-linked glycosylation of recombinant proteins. Google Scholar
Young, N. M. et al. Structure of the _N_-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem.277, 42530–42539 (2002). ArticleCASPubMed Google Scholar
Nita-Lazar, M., Wacker, M., Schegg, B., Amber, S. & Aebi, M. The N-X-S/T consensus sequence is required but not sufficient for bacterial _N_-linked protein glycosylation. Glycobiology15, 361–367 (2005). ArticleCASPubMed Google Scholar
Kakuda, T. & DiRita, V. J. Cj1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect. Immun.74, 4715–4723 (2006). ArticleCASPubMedPubMed Central Google Scholar
Szymanski, C. M., Burr, D. H. & Guerry, P. Campylobacter protein glycosylation affects host cell interactions. Infect. Immun.70, 2242–2244 (2002). ArticleCASPubMedPubMed Central Google Scholar
Karlyshev, A. V. et al. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology150, 1957–1964 (2004). ArticleCASPubMed Google Scholar
Kelly, J. et al. Biosynthesis of the _N_-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol.188, 2427–2434 (2006). ArticleCASPubMedPubMed Central Google Scholar
Linton, D., Allan, E., Karlyshev, A. V., Cronshaw, A. D. & Wren, B. W. Identification of _N_-acetylgalactosaminecontaining glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol.43, 497–508 (2002). ArticleCASPubMed Google Scholar
Konkel, M. E., Kim, B. J., Rivera-Amill, V. & Garvis, S. G. Identification of proteins required for the internalization of Campylobacter jejuni into cultured mammalian cells. Adv. Exp. Med. Biol.473, 215–224 (1999). ArticleCASPubMed Google Scholar
Konkel, M. E., Kim, B. J., Rivera-Amill, V. & Garvis, S. G. Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol. Microbiol.32, 691–701 (1999). ArticleCASPubMed Google Scholar
Ziprin, R. L. et al. Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis.45, 549–557 (2001). ArticleCASPubMed Google Scholar
Rivera-Amill, V., Kim, B. J., Seshu, J. & Konkel, M. E. Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J. Infect. Dis.183, 1607–1616 (2001). ArticleCASPubMed Google Scholar
Konkel, M. E. et al. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol.186, 3296–3303 (2004). ArticleCASPubMedPubMed Central Google Scholar
Young, G. M., Schmiel, D. H. & Miller, V. L. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl Acad. Sci. USA96, 6456–6461 (1999). ArticleCASPubMedPubMed Central Google Scholar
Song, Y. C. et al. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol.53, 541–553 (2004). References 89, 92 and 94 identified secreted proteins ofC. jejunias important for host cell invasion, and reported that the flagella is a major export apparatus of these proteins. ArticleCASPubMed Google Scholar
Whitehouse, C. A. et al. Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect. Immun.66, 1934–1940 (1998). CASPubMedPubMed Central Google Scholar
Lara-Tejero, M. & Galan, J. E. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science290, 354–357 (2000). ArticleCASPubMed Google Scholar
Hassane, D. C., Lee, R. B., Mendenhall, M. D. & Pickett, C. L. Cytolethal distending toxin demonstrates genotoxic activity in a yeast model. Infect. Immun.69, 5752–5759 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lara-Tejero, M. & Galan, J. E. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect. Immun.69, 4358–4365 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hassane, D. C., Lee, R. B. & Pickett, C. L. Campylobacter jejuni cytolethal distending toxin promotes DNA repair responses in normal human cells. Infect. Immun.71, 541–545 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lee, R. B., Hassane, D. C., Cottle, D. L. & Pickett, C. L. Interactions of Campylobacter jejuni cytolethal distending toxin subunits CdtA and CdtC with HeLa cells. Infect. Immun.71, 4883–4890 (2003). ArticleCASPubMedPubMed Central Google Scholar
Elwell, C. A. & Dreyfus, L. A. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol. Microbiol.37, 952–963 (2000). References 96 and 101 demonstrated that the mechanism of action of the cytolethal distending toxin may involve DNase I activity. ArticleCASPubMed Google Scholar
Sert, V. et al. The bacterial cytolethal distending toxin (CDT) triggers a G2 cell cycle checkpoint in mammalian cells without preliminary induction of DNA strand breaks. Oncogene18, 6296–6304 (1999). ArticleCASPubMed Google Scholar
Li, L. et al. The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell. Microbiol.4, 87–99 (2002). ArticleCASPubMed Google Scholar
Mao, X. & DiRienzo, J. M. Functional studies of the recombinant subunits of a cytolethal distending holotoxin. Cell. Microbiol.4, 245–255 (2002). ArticleCASPubMedPubMed Central Google Scholar
McSweeney, L. A. & Dreyfus, L. A. Nuclear localization of the Escherichia coli cytolethal distending toxin CdtB subunit. Cell. Microbiol.6, 447–458 (2004). ArticleCASPubMed Google Scholar
Nishikubo, S. et al. An N-terminal segment of the active component of the bacterial genotoxin cytolethal distending toxin B (CDTB) directs CDTB into the nucleus. J. Biol. Chem.278, 50671–50681 (2003). ArticleCASPubMed Google Scholar
Cortes-Bratti, X., Chaves-Olarte, E., Lagergard, T. & Thelestam, M. Cellular internalization of cytolethal distending toxin from Haemophilus ducreyi. Infect. Immun.68, 6903–6911 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hickey, T. E. et al. Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect. Immun.68, 6535–6541 (2000). Demonstrated a role for CDT in the intracellular survival ofC. jejuniin a human monocytic cell line. ArticleCASPubMedPubMed Central Google Scholar
Hickey, T. E., Majam, G. & Guerry, P. Intracellular survival of Campylobacter jejuni in human monocytic cells and induction of apoptotic death by cytholethal distending toxin. Infect. Immun.73, 5194–5197 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ge, Z. et al. Cytolethal distending toxin is essential for Helicobacter hepaticus colonization in outbred Swiss Webster mice. Infect. Immun.73, 3559–3567 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pratt, J. S., Sachen, K. L., Wood, H. D., Eaton, K. A. & Young, V. B. Modulation of host immune responses by the cytolethal distending toxin of Helicobacter hepaticus. Infect. Immun.74, 4496–4504 (2006). ArticleCASPubMedPubMed Central Google Scholar
AbuOun, M. et al. Cytolethal distending toxin (CDT)-negative Campylobacter jejuni strains and anti-CDT neutralizing antibodies are induced during human infection but not during colonization in chickens. Infect. Immun.73, 3053–3062 (2005). ArticleCASPubMedPubMed Central Google Scholar
Biswas, D. et al. Effect of cytolethal distending toxin of Campylobacter jejuni on adhesion and internalization in cultured cells and in colonization of the chicken gut. Avian Dis.50, 586–593 (2006). ArticlePubMed Google Scholar
Konkel, M. E., Garvis, S. G., Tipton, S. L., Anderson, D. E. Jr & Cieplak, W. Jr. Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol. Microbiol.24, 953–963 (1997). ArticleCASPubMed Google Scholar
Monteville, M. R. & Konkel, M. E. Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect. Immun.70, 6665–6671 (2002). ArticleCASPubMedPubMed Central Google Scholar
Monteville, M. R., Yoon, J. E. & Konkel, M. E. Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology149, 153–165 (2003). ArticleCASPubMed Google Scholar
Konkel, M. E. et al. Identification of a fibronectin-binding domain within the Campylobacter jejuni CadF protein. Mol. Microbiol.57, 1022–1035 (2005). ArticleCASPubMed Google Scholar
Ziprin, R. L., Young, C. R., Stanker, L. H., Hume, M. E. & Konkel, M. E. The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. Avian Dis.43, 586–589 (1999). ArticleCASPubMed Google Scholar
Mamelli, L., Pages, J. M., Konkel, M. E. & Bolla, J. M. Expression and purification of native and truncated forms of CadF, an outer membrane protein of Campylobacter. Int. J. Biol. Macromol.39, 135–140 (2006). ArticleCASPubMed Google Scholar
Jin, S. et al. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol.39, 1225–1236 (2001). ArticleCASPubMed Google Scholar
Jin, S., Song, Y. C., Emili, A., Sherman, P. M. & Chan, V. L. JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90α and triggers signalling pathways leading to the activation of NF-κB and p38 MAP kinase in epithelial cells. Cell. Microbiol.5, 165–174 (2003). ArticleCASPubMed Google Scholar
Ashgar, S. S. et al. CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J. Bacteriol.189, 1856–1865 (2007). ArticleCASPubMed Google Scholar
Kervella, M. et al. Isolation and characterization of two Campylobacter glycine-extracted proteins that bind to HeLa cell membranes. Infect. Immun.61, 3440–3448 (1993). CASPubMedPubMed Central Google Scholar
Pei, Z. et al. Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect. Immun.66, 938–943 (1998). CASPubMedPubMed Central Google Scholar
Pei, Z. & Blaser, M. J. PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J. Biol. Chem.268, 18717–18725 (1993). CASPubMed Google Scholar
Leon-Kempis Mdel, R., Guccione, E., Mulholland, F., Williamson, M. P. & Kelly, D. J. The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol. Microbiol.60, 1262–1275 (2006). ArticleCASPubMed Google Scholar
Robinson, D. A. Infective dose of Campylobacter jejuni in milk. Br. Med. J. (Clin. Res. Ed.)282, 1584 (1981). ArticleCAS Google Scholar
Black, R. E., Levine, M. M., Clements, M. L., Hughes, T. P. & Blaser, M. J. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis.157, 472–479 (1988). ArticleCASPubMed Google Scholar
Blaser, M. J. et al. Isolation of Campylobacter fetus subsp. jejuni from Bangladeshi children. J. Clin. Microbiol.12, 744–747 (1980). CASPubMedPubMed Central Google Scholar
Blaser, M. J., Taylor, D. N. & Feldman, R. A. Epidemiology of Campylobacter jejuni infections. Epidemiol. Rev.5, 157–176 (1983). ArticleCASPubMed Google Scholar
McSweegan, E. & Walker, R. I. Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates. Infect. Immun.53, 141–148 (1986). CASPubMedPubMed Central Google Scholar
van Spreeuwel, J. P. et al. Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut26, 945–951 (1985). First description of the novel microtubule-dependent invasion mechanism ofC. jejuni. ArticleCASPubMedPubMed Central Google Scholar
Oelschlaeger, T. A., Guerry, P. & Kopecko, D. J. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc. Natl Acad. Sci. USA90, 6884–6888 (1993). ArticleCASPubMedPubMed Central Google Scholar
Hu, L. & Kopecko, D. J. Campylobacter jejuni 81-176 associates with microtubules and dynein during invasion of human intestinal cells. Infect. Immun.67, 4171–4182 (1999). CASPubMedPubMed Central Google Scholar
Biswas, D., Itoh, K. & Sasakawa, C. Uptake pathways of clinical and healthy animal isolates of Campylobacter jejuni into INT-407 cells. FEMS Immunol. Med. Microbiol.29, 203–211 (2000). ArticleCASPubMed Google Scholar
Biswas, D., Itoh, K. & Sasakawa, C. Role of microfilaments and microtubules in the invasion of INT-407 cells by Campylobacter jejuni. Microbiol. Immunol.47, 469–473 (2003). ArticleCASPubMed Google Scholar
Finlay, B. B. Bacterial virulence strategies that utilize Rho GTPases. Curr. Top. Microbiol. Immunol.291, 1–10 (2005). CASPubMed Google Scholar
Selbach, M. & Backert, S. Cortactin: an Achilles' heel of the actin cytoskeleton targeted by pathogens. Trends Microbiol.13, 181–189 (2005). ArticleCASPubMed Google Scholar
Watson, R. O. & Galan, J. E. Signal transduction in _Campylobacter jejuni_-induced cytokine production. Cell. Microbiol.7, 655–665 (2005). Mapped the signal-transduction pathway duringC. jejuniinfection of intestinal epithelial cells, showing stimulation of ERK, p38 and MAP kinase activity. Also demonstrated thatC. jejuniflagellin stimulation of TLR5 is minimal. ArticleCASPubMed Google Scholar
MacCallum, A., Haddock, G. & Everest, P. H. Campylobacter jejuni activates mitogen-activated protein kinases in Caco-2 cell monolayers and in vitro infected primary human colonic tissue. Microbiology151, 2765–2772 (2005). ArticleCASPubMed Google Scholar
Johanesen, P. A. & Dwinell, M. B. Flagellin-independent regulation of chemokine host defense in _Campylobacter jejuni_-infected intestinal epithelium. Infect. Immun.74, 3437–3447 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dalpke, A., Frank, J., Peter, M. & Heeg, K. Activation of toll-like receptor 9 by DNA from different bacterial species. Infect. Immun.74, 940–946 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zilbauer, M. et al. A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell. Microbiol. (2007).
Hu, L., Bray, M. D., Osorio, M. & Kopecko, D. J. Campylobacter jejuni induces maturation and cytokine production in human dendritic cells. Infect. Immun.74, 2697–2705 (2006). Described the maturation of dendritic cells and their activation in response toC. jejuniinfection. ArticleCASPubMedPubMed Central Google Scholar
Jones, M. A., Totemeyer, S., Maskell, D. J., Bryant, C. E. & Barrow, P. A. Induction of proinflammatory responses in the human monocytic cell line THP-1 by Campylobacter jejuni. Infect. Immun.71, 2626–2633 (2003). ArticleCASPubMedPubMed Central Google Scholar
Siegesmund, A. M., Konkel, M. E., Klena, J. D. & Mixter, P. F. Campylobacter jejuni infection of differentiated THP-1 macrophages results in interleukin 1-β release and caspase-1-independent apoptosis. Microbiology150, 561–569 (2004). ArticleCASPubMed Google Scholar
Wassenaar, T. M., Engelskirchen, M., Park, S. & Lastovica, A. Differential uptake and killing potential of Campylobacter jejuni by human peripheral monocytes/macrophages. Med. Microbiol. Immunol.186, 139–144 (1997). ArticleCASPubMed Google Scholar
Kiehlbauch, J. A., Albach, R. A., Baum, L. L. & Chang, K. P. Phagocytosis of Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. Infect. Immun.48, 446–451 (1985). CASPubMedPubMed Central Google Scholar
Day, W. A. Jr, Sajecki, J. L., Pitts, T. M. & Joens, L. A. Role of catalase in Campylobacter jejuni intracellular survival. Infect. Immun.68, 6337–6345 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nachamkin, I. & Yang, X. H. Human antibody response to Campylobacter jejuni flagellin protein and a synthetic N-terminal flagellin peptide. J. Clin. Microbiol.27, 2195–2198 (1989). CASPubMedPubMed Central Google Scholar
Panigrahi, P., Losonsky, G., DeTolla, L. J. & Morris, J. G. Jr. Human immune response to Campylobacter jejuni proteins expressed in vivo. Infect. Immun.60, 4938–4944 (1992). CASPubMedPubMed Central Google Scholar
Guerry, P., Ewing, C. P., Hickey, T. E., Prendergast, M. M. & Moran, A. P. Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect. Immun.68, 6656–6662 (2000). ArticleCASPubMedPubMed Central Google Scholar
Coker, A. O., Isokpehi, R. D., Thomas, B. N., Amisu, K. O. & Obi, C. L. Human campylobacteriosis in developing countries. Emerg. Infect. Dis.8, 237–244 (2002). ArticlePubMedPubMed Central Google Scholar
Kaldor, J., Pritchard, H., Serpell, A. & Metcalf, W. Serum antibodies in Campylobacter enteritis. J. Clin. Microbiol.18, 1–4 (1983). CASPubMedPubMed Central Google Scholar
Lee, M. D. & Newell, D. G. Campylobacter in poultry: filling an ecological niche. Avian Dis.50, 1–9 (2006). ArticleCASPubMed Google Scholar
Clench, M. H. & Mathias, J. R. The avian cecum: a review. The Wilson Bulletin107, 93–121 (1995). Google Scholar
Byrne, C. M., Clyne, M. & Bourke, B. Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology153, 561–569 (2007). ArticleCASPubMed Google Scholar
Nachamkin, I., Yang, X. H. & Stern, N. J. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl. Environ. Microbiol.59, 1269–1273 (1993). CASPubMedPubMed Central Google Scholar
Wassenaar, T. M., van der Zeijst, B. A., Ayling, R. & Newell, D. G. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J. Gen. Microbiol.139, 1171–1175 (1993). ArticleCASPubMed Google Scholar
Raphael, B. H. et al. The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J. Bacteriol.187, 3662–3670 (2005). ArticleCASPubMedPubMed Central Google Scholar
Stintzi, A. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol.185, 2009–2016 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bras, A. M., Chatterjee, S., Wren, B. W., Newell, D. G. & Ketley, J. M. A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J. Bacteriol.181, 3298–3302 (1999). CASPubMedPubMed Central Google Scholar
MacKichan, J. K. et al. The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol. Microbiol.54, 1269–1286 (2004). ArticleCASPubMed Google Scholar
Purdy, D., Cawthraw, S., Dickinson, J. H., Newell, D. G. & Park, S. F. Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization. Appl. Environ. Microbiol.65, 2540–2546 (1999). CASPubMedPubMed Central Google Scholar
Lin, J., Sahin, O., Michel, L. O. & Zhang, Q. Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect. Immun.71, 4250–4259 (2003). ArticleCASPubMedPubMed Central Google Scholar
Luo, N., Sahin, O., Lin, J., Michel, L. O. & Zhang, Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother.47, 390–394 (2003). ArticleCASPubMedPubMed Central Google Scholar
Palyada, K., Threadgill, D. & Stintzi, A. Iron acquisition and regulation in Campylobacter jejuni. J. Bacteriol.186, 4714–4729 (2004). ArticleCASPubMedPubMed Central Google Scholar
Velayudhan, J., Jones, M. A., Barrow, P. A. & Kelly, D. J. L-serine catabolism via an oxygen-labile L-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect. Immun.72, 260–268 (2004). ArticleCASPubMedPubMed Central Google Scholar
Woodall, C. A. et al. Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect. Immun.73, 5278–5285 (2005). Described theC. jejunigene-expression profile during chick colonization, so providing clues as to the adaptation ofC. jejunito its commensal colonization niche. ArticleCASPubMedPubMed Central Google Scholar
Smith, C. K. et al. _Campylobacter jejuni_-induced cytokine responses in avian cells. Infect. Immun.73, 2094–2100 (2005). Showed thatCampylobactercan stimulate a proinflammatory response in avian cells, so suggesting that colonization does not occur because of the inability to stimulate the chick immune system. ArticleCASPubMedPubMed Central Google Scholar
Kogut, M. H. et al. Expression and function of Toll-like receptors in chicken heterophils. Dev. Comp. Immunol.29, 791–807 (2005). ArticleCASPubMed Google Scholar
Kogut, M. H., Swaggerty, C., He, H., Pevzner, I. & Kaiser, P. Toll-like receptor agonists stimulate differential functional activation and cytokine and chemokine gene expression in heterophils isolated from chickens with differential innate responses. Microbes Infect.8, 1866–1874 (2006). ArticleCASPubMed Google Scholar
Fukui, A. et al. Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. J. Biol. Chem.276, 47143–47149 (2001). ArticleCASPubMed Google Scholar
Bar-Shira, E. & Friedman, A. Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Dev. Comp. Immunol.30, 930–941 (2006). ArticleCASPubMed Google Scholar
Sahin, O. et al. Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. Appl. Environ. Microbiol.67, 3951–3957 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cawthraw, S., Ayling, R., Nuijten, P., Wassenaar, T. & Newell, D. G. Isotype, specificity, and kinetics of systemic and mucosal antibodies to Campylobacter jejuni antigens, including flagellin, during experimental oral infections of chickens. Avian Dis.38, 341–349 (1994). ArticleCASPubMed Google Scholar
Sahin, O., Luo, N., Huang, S. & Zhang, Q. Effect of _Campylobacter_-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl. Environ. Microbiol.69, 5372–5379 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jeurissen, S. H., Janse, E. M., van Rooijen, N. & Claassen, E. Inadequate anti-polysaccharide antibody responses in the chicken. Immunobiology198, 385–395 (1998). ArticleCASPubMed Google Scholar
Chang, C. & Miller, J. F. Campylobacter jejuni colonization of mice with limited enteric flora. Infect. Immun.74, 5261–5271 (2006). Reported a promising new mouse model ofC. jejuniinfection that enabled low-dose infection and analysis of immune-clearance mechanisms. ArticleCASPubMedPubMed Central Google Scholar
Young, C. R., Ziprin, R. L., Hume, M. E. & Stanker, L. H. Dose response and organ invasion of day-of-hatch Leghorn chicks by different isolates of Campylobacter jejuni. Avian Dis.43, 763–767 (1999). ArticleCASPubMed Google Scholar
Wong, T. L. et al. Prevalence, numbers, and subtypes of Campylobacter jejuni and Campylobacter coli in uncooked retail meat samples. J. Food Prot.70, 566–573 (2007). ArticlePubMed Google Scholar
Stern, N. J., Bailey, J. S., Blankenship, L. C., Cox, N. A. & McHan, F. Colonization characteristics of Campylobacter jejuni in chick ceca. Avian Dis.32, 330–334 (1988). ArticleCASPubMed Google Scholar
Luo, N. et al. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl Acad. Sci. USA102, 541–546 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science310, 670–674 (2005). ArticleCASPubMed Google Scholar
de Zoete, M. R., van Putten, J. P. & Wagenaar, J. A. Vaccination of chickens against Campylobacter. Vaccine25, 5548–5557 (2006). ArticleCASPubMed Google Scholar
Sizemore, D. R., Warner, B., Lawrence, J., Jones, A. & Killeen, K. P. Live, attenuated Salmonella typhimurium vectoring Campylobacter antigens. Vaccine24, 3793–3803 (2006). ArticleCASPubMed Google Scholar
Wagner, R. D. Efficacy and food safety considerations of poultry competitive exclusion products. Mol. Nutr. Food Res.50, 1061–1071 (2006). ArticleCASPubMed Google Scholar
Szymanski, C. M. & Wren, B. W. Protein glycosylation in bacterial mucosal pathogens. Nature Rev. Microbiol.3, 225–237 (2005). ArticleCAS Google Scholar
Al-Salloom, F. S. et al. _Campylobacter_-stimulated INT407 cells produce dissociated cytokine profiles. J. Infect.47, 217–224 (2003). ArticlePubMed Google Scholar