Cyclic di-AMP: another second messenger enters the fray (original) (raw)
McDonough, K. A. & Rodriguez, A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nature Rev. Microbiol.10, 27–38 (2012). CAS Google Scholar
Dalebroux, Z. D. & Swanson, M. S. ppGpp: magic beyond RNA polymerase. Nature Rev. Microbiol.10, 203–212 (2012). CAS Google Scholar
Hengge, R. Principles of c-di-GMP signalling in bacteria. Nature Rev. Microbiol.7, 263–273 (2009). CAS Google Scholar
Witte, G., Hartung, S., Buttner, K. & Hopfner, K. P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell.30, 167–178 (2008). Thisin vitrostudy is the first to identify a c-di-AMP-synthesizing enzyme. CASPubMed Google Scholar
Bejerano-Sagie, M. et al. A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis. Cell125, 679–690 (2006). CASPubMed Google Scholar
Woodward, J. J., Iavarone, A. T. & Portnoy, D. A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science328, 1703–1705 (2010). The original paper demonstrating that c-di-AMP is synthesized by bacterial cells and that it can activate a human innate immune response. CASPubMedPubMed Central Google Scholar
Kamegaya, T., Kuroda, K. & Hayakawa, Y. Identification of a Streptococcus pyogenes SF370 gene involved in production of c-di-AMP. Nagoya J. Med. Sci.73, 49–57 (2011). CASPubMed Google Scholar
Oppenheimer-Shaanan, Y., Wexselblatt, E., Katzhendler, J., Yavin, E. & Ben-Yehuda, S. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep.12, 594–601 (2011). A study which establishes that c-di-AMP is produced byB. subtilisand that YybT functionsin vivoas a PDE for c-di-AMP. CASPubMedPubMed Central Google Scholar
Barker, J. R. et al. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio4, e00018-13 (2013). The first evidence that c-di-AMP is also produced by a Gram-negative bacterium. PubMedPubMed Central Google Scholar
Corrigan, R. M. & Abbott, J. C., Burhenne, H., Kaever, V. & Grundling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog.7, e1002217 (2011). CASPubMedPubMed Central Google Scholar
Bai, Y. et al. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. PLoS ONE7, e35206 (2012). CASPubMedPubMed Central Google Scholar
Römling, U. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci. Signal.1, pe39 (2008). PubMed Google Scholar
Zhang, L., Li, W. & He, Z. G. DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J. Biol. Chem.288, 3085–3096 (2013). A paper identifying the first c-di-AMP receptor. CASPubMed Google Scholar
Corrigan, R. M., Campeotto, I., Jeganathan, T., Lee, V. T. & Gründling, A. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc. Natl Acad. Sci USA110, 9084–9089 (2013). Work describing the identification of several conserved c-di-AMP receptors. CASPubMedPubMed Central Google Scholar
Mehne, F. M. et al. Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high-level accumulation of the nucleotide are detrimental for cell growth. J. Biol. Chem.288, 2004–2017 (2013). CASPubMed Google Scholar
Luo, Y. & Helmann, J. D. Analysis of the role of Bacillus subtilis σM in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol. Microbiol.83, 623–639 (2012). CASPubMedPubMed Central Google Scholar
Pozzi, C. et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog.8, e1002626 (2012). CASPubMedPubMed Central Google Scholar
Griffiths, J. M. & O'Neill, A. J. Loss of function of the gdpP protein leads to joint β-lactam/glycopeptide tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother.56, 579–581 (2012). CASPubMedPubMed Central Google Scholar
Banerjee, R., Gretes, M., Harlem, C., Basuino, L. & Chambers, H. F. A _mecA_-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Antimicrob. Agents Chemother.54, 4900–4902 (2010). CASPubMedPubMed Central Google Scholar
Davies, B. W., Bogard, R. W., Young, T. S. & Mekalanos, J. J. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell149, 358–370 (2012). CASPubMedPubMed Central Google Scholar
Baker, D. A. & Kelly, J. M. Structure, function and evolution of microbial adenylyl and guanylyl cyclases. Mol. Microbiol.52, 1229–1242 (2004). CASPubMed Google Scholar
Punta, M. et al. The Pfam protein families database. Nucleic Acids Res.40, D290–D301 (2012). CASPubMed Google Scholar
Galperin, M. Y. Bacterial signal transduction network in a genomic perspective. Environ. Microbiol.6, 552–667 (2004). CASPubMedPubMed Central Google Scholar
Galperin, M. Y., Higdon, R. & Kolker, E. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol. Biosyst6, 721–728 (2010). CASPubMedPubMed Central Google Scholar
Römling, U., Gomelsky, M. & Galperin, M. Y. c-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol.57, 629–639 (2005). PubMed Google Scholar
Barb, A. W. et al. Structures of domains I and IV from YbbR are representative of a widely distributed protein family. Protein Sci.20, 396–405 (2011). CASPubMed Google Scholar
Fedorov, R. et al. Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins. Acta Crystallogr. D Biol. Crystallogr.57, 968–976 (2001). CASPubMed Google Scholar
Harms, J. M. et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell30, 26–38 (2008). CASPubMed Google Scholar
Kirstein, J., Zuhlke, D., Gerth, U., Turgay, K. & Hecker, M. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J.24, 3435–3445 (2005). CASPubMedPubMed Central Google Scholar
Eiamphungporn, W. & Helmann, J. D. The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses. Mol. Microbiol.67, 830–848 (2008). CASPubMedPubMed Central Google Scholar
Jervis, A. J., Thackray, P. D., Houston, C. W., Horsburgh, M. J. & Moir, A. SigM-responsive genes of Bacillus subtilis and their promoters. J. Bacteriol.189, 4534–4538 (2007). CASPubMedPubMed Central Google Scholar
Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science335, 1103–1106 (2012). CASPubMed Google Scholar
Rao, F. et al. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J. Biol. Chem.285, 473–482 (2010). On the basis ofin vitroexperiments carried out in this study, the authors propose that theB. subtilisprotein YybT functions as a c-di-AMP-specific PDE. CASPubMed Google Scholar
Luo, Y. & Helmann, J. D. A σD-dependent antisense transcript modulates expression of the cyclic-di-AMP hydrolase GdpP in Bacillus subtilis. Microbiology158, 2732–2741 (2012). CASPubMedPubMed Central Google Scholar
Rao, F., Ji, Q., Soehano, I. & Liang, Z. X. An unusual heme-binding, PAS domain from YybT family proteins. J. Bacteriol.193, 1543–1551 (2011). CASPubMedPubMed Central Google Scholar
Schirmer, T. & Jenal, U. Structural and mechanistic determinants of c-di-GMP signalling. Nature Rev. Microbiol.7, 724–735 (2009). CAS Google Scholar
Christen, M., Christen, B., Folcher, M., Schauerte, A. & Jenal, U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem.280, 30829–30837 (2005). CASPubMed Google Scholar
Massie, J. P. et al. Quantification of high-specificity cyclic diguanylate signaling. Proc. Natl Acad. Sci. USA109, 12746–12751 (2012). CASPubMedPubMed Central Google Scholar
Hickman, J. W. & Harwood, C. S. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol.69, 376–389 (2008). CASPubMedPubMed Central Google Scholar
Witte, C. E. et al. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio4, e00282-13 (2013). PubMedPubMed Central Google Scholar
Song, J. H. et al. Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells.19, 365–374 (2005). CASPubMed Google Scholar
Chaudhuri, R. R. et al. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics10, 291 (2009). PubMedPubMed Central Google Scholar
Epstein, W. The roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol.75, 293–320 (2003). CASPubMed Google Scholar
Hanelt, I. et al. KtrB, a member of the superfamily of K+ transporters. Eur. J. Cell Biol.90, 696–704 (2011). PubMed Google Scholar
Smith, W. M. et al. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth. Appl. Environ. Microbiol.78, 7753–7759 (2012). CASPubMedPubMed Central Google Scholar
Mari, S. A. et al. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl Acad. Sci. USA108, 20802–20807 (2011). PubMedPubMed Central Google Scholar
Freeman, Z. N., Dorus, S. & Waterfield, N. R. The KdpD/KdpE two-component system: integrating K+ homeostasis and virulence. PLoS Pathog.9, e1003201 (2013). CASPubMedPubMed Central Google Scholar
Arnesano, F. et al. The evolutionarily conserved trimeric structure of CutA1 proteins suggests a role in signal transduction. J. Biol. Chem.278, 5999–6006 (2003). Google Scholar
Lohkamp, B., McDermott, G., Campbell, S. A., Coggins, J. R. & Lapthorn, A. J. The structure of Escherichia coli ATP-phosphoribosyltransferase: identification of substrate binding sites and mode of AMP inhibition. J. Mol. Biol.336, 131–144 (2004). CASPubMed Google Scholar
Ninfa, A. J. & Atkinson, M. R. PII signal transduction proteins. Trends Microbiol.8, 172–179 (2000). CASPubMed Google Scholar
Rallu, F., Gruss, A., Ehrlich, S. D. & Maguin, E. Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol. Microbiol.35, 517–528 (2000). CASPubMed Google Scholar
Damper, P. D. & Epstein, W. Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob. Agents Chemother.20, 803–808 (1981). CASPubMedPubMed Central Google Scholar
Mates, S. M., Patel, L., Kaback, H. R. & Miller, M. H. Membrane potential in anaerobically growing Staphylococcus aureus and its relationship to gentamicin uptake. Antimicrob. Agents Chemother.23, 526–530 (1983). CASPubMedPubMed Central Google Scholar
Schwartz, K. T. et al. Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infect. Immun.80, 1537–1545 (2012). CASPubMedPubMed Central Google Scholar
Crimmins, G. T. et al. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc. Natl Acad. Sci. USA105, 10191–10196 (2008). CASPubMedPubMed Central Google Scholar
Yamamoto, T. et al. Listeria monocytogenes strain-specific impairment of the TetR regulator underlies the drastic increase in cyclic di-AMP secretion and beta interferon-inducing ability. Infect. Immun.80, 2323–2332 (2012). CASPubMedPubMed Central Google Scholar
Parvatiyar, K. et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nature Immunol.13, 1155–1161 (2012). CAS Google Scholar
Sauer, J. D. et al. The _N_-ethyl-_N_-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun.79, 688–694 (2010). PubMedPubMed Central Google Scholar
Jin, L. et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol.187, 2595–2601 (2011). CASPubMed Google Scholar
Ouyang, S. et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity36, 1073–1086 (2012). CASPubMed Google Scholar
Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nature Struct. Mol. Biol.19, 725–727 (2012). CAS Google Scholar
Shu, C., Yi, G., Watts, T., Kao, C. C. & Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nature Struct. Mol. Biol.19, 722–724 (2012). CAS Google Scholar
Huang, Y. H., Liu, X. Y., Du, X. X., Jiang, Z. F. & Su, X. D. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nature Struct. Mol. Biol.19, 728–730 (2012). CAS Google Scholar
Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA106, 20842–20846 (2009). CASPubMedPubMed Central Google Scholar
Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science339, 826–830 (2013). The first demonstration that the cyclic hybrid dinucleotide cGAMP(2′–5′) is produced by eukaryotic cells. CASPubMed Google Scholar
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science339, 786–791 (2013). A report detailing the discovery of the enzyme responsible for cGAMP(2′–5′) production in eukaryotic cells. CASPubMed Google Scholar
Diner, E. J. et al. The Innate Immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep.3, 1355–1361 (2013). CASPubMedPubMed Central Google Scholar
Kranzusch, P. J., Lee, A. S., Berger, J. M. & Doudna, J. A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep.3, 1362–1368 (2013). CASPubMedPubMed Central Google Scholar
Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Naturehttp://dx.doi.org/10.1038/nature12306 (2013).
Karaolis, D. K. et al. 3′,5′-cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochem. Biophys. Res. Commun.329, 40–45 (2005). CASPubMed Google Scholar
Ebensen, T. et al. Bis-(3′,5′)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine29, 5210–5220 (2011). CASPubMed Google Scholar
Ebensen, T. et al. The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine25, 1464–1469 (2007). CASPubMed Google Scholar
Chen, W., Kuolee, R. & Yan, H. The potential of 3′,5′-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine28, 3080–3085 (2010). CASPubMed Google Scholar
Roelofs, K. G., Wang, J., Sintim, H. O. & Lee, V. T. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc. Natl Acad. Sci. USA108, 15528–15533 (2011). A paper describing a novel and rapid method for the detection of small-molecule protein interactions; this procedure is ideally suited for high-throughput screening assays. CASPubMedPubMed Central Google Scholar
Nesper, J., Reinders, A., Glatter, T., Schmidt, A. & Jenal, U. A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J. Proteom.75, 4874–4878 (2012). CAS Google Scholar
Ross, P. et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature325, 279–281 (1987). CASPubMed Google Scholar
Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet.40, 385–407 (2006). CASPubMed Google Scholar
Barends, T. R. et al. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature459, 1015–1018 (2009). CASPubMed Google Scholar
Tuckerman, J. R. et al. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry48, 9764–9774 (2009). CASPubMed Google Scholar
Gjermansen, M., Ragas, P., Sternberg, C., Molin, S. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol.7, 894–906 (2005). CASPubMed Google Scholar
Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature436, 1171–1175 (2005). CASPubMed Google Scholar
Qi, Y., Rao, F., Luo, Z. & Liang, Z. X. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum. Biochemistry48, 10275–10285 (2009). CASPubMed Google Scholar
Tischler, A. D. & Camilli, A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol.53, 857–869 (2004). CASPubMedPubMed Central Google Scholar
Kulasekara, H. D. et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol. Microbiol.55, 368–380 (2005). CASPubMed Google Scholar
Sondermann, H., Shikuma, N. J. & Yildiz, F. H. You've come a long way: c-di-GMP signaling. Curr. Opin. Microbiol.15, 140–146 (2012). CASPubMedPubMed Central Google Scholar
Ryjenkov, D. A., Simm, R., Romling, U. & Gomelsky, M. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem.281, 30310–30314 (2006). CASPubMed Google Scholar
Merighi, M., Lee, V. T., Hyodo, M., Hayakawa, Y. & Lory, S. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol.65, 876–895 (2007). CASPubMed Google Scholar
Duerig, A. et al. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev.23, 93–104 (2009). CASPubMedPubMed Central Google Scholar
Newell, P. D., Monds, R. D. & O'Toole, G. A. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc. Natl Acad. Sci. USA106, 3461–3466 (2009). CASPubMedPubMed Central Google Scholar
Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science321, 411–413 (2008). CASPubMedPubMed Central Google Scholar
Jurica, M. S. et al. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure6, 195–210 (1998). CASPubMed Google Scholar
Sing, A. et al. Bacterial induction of beta interferon in mice is a function of the lipopolysaccharide component. Infect. Immun.68, 1600–1607 (2000). CASPubMedPubMed Central Google Scholar
McCaffrey, R. L. et al. A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc. Natl Acad. Sci. USA101, 11386–11391 (2004). CASPubMedPubMed Central Google Scholar
Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461, 788–792 (2009). CASPubMedPubMed Central Google Scholar