Structural mechanism of cytosolic DNA sensing by cGAS (original) (raw)
Rathinam, V. A. K. & Fitzgerald, K. A. Cytosolic surveillance and antiviral immunity. Curr. Opin. Virol.1, 455–462 (2011) ArticleCAS Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010) ArticleCAS Google Scholar
Keating, S. E., Baran, M. & Bowie, A. G. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol.32, 574–581 (2011) ArticleCAS Google Scholar
Krug, A. Nucleic acid recognition receptors in autoimmunity. Handb. Exp. Pharmacol.183, 129–151 (2008) ArticleCAS Google Scholar
Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448, 501–505 (2007) ArticleCASADS Google Scholar
Bürckstümmer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunol.10, 266–272 (2009) Article Google Scholar
Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature458, 509–513 (2009) ArticleCASADS Google Scholar
Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature458, 514–518 (2009) ArticleCASADS Google Scholar
Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunol.10, 1065–1072 (2009) ArticleCAS Google Scholar
Chiu, Y. H., Macmillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell138, 576–591 (2009) ArticleCAS Google Scholar
Yang, P. et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β-catenin-dependent pathway. Nature Immunol.11, 487–494 (2010) ArticleCAS Google Scholar
Kim, T. et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA107, 15181–15186 (2010) ArticleCASADS Google Scholar
Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature Immunol.12, 959–965 (2011) ArticleCAS Google Scholar
Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nature Immunol.11, 997–1004 (2010) ArticleCAS Google Scholar
Rathinam, V. A. & Fitzgerald, K. A. Innate immune sensing of DNA viruses. Virology411, 153–162 (2011) ArticleCAS Google Scholar
Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461, 788–792 (2009) ArticleCASADS Google Scholar
Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature455, 674–678 (2008) ArticleCASADS Google Scholar
Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science339, 826–830 (2013) ArticleCASADS Google Scholar
Abe, T. et al. STING recognition of cytoplasmic DNA instigates cellular defense. Mol. Cell50, 5–15 (2013) ArticleCAS Google Scholar
Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature478, 515–518 (2011) ArticleCASADS Google Scholar
McWhirter, S. M. et al. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med.206, 1899–1911 (2009) ArticleCAS Google Scholar
Woodward, J. J., Iavarone, A. T. & Portnoy, D. A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science328, 1703–1705 (2010) ArticleCASADS Google Scholar
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science339, 786–791 (2013) ArticleCASADS Google Scholar
Kuchta, K., Knizewski, L., Wyrwicz, L. S., Rychlewski, L. & Ginalski, K. Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res.37, 7701–7714 (2009) ArticleCAS Google Scholar
Cui, S. et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell29, 169–179 (2008) ArticleCAS Google Scholar
Witte, G., Hartung, S., Buttner, K. & Hopfner, K. P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell30, 167–178 (2008) ArticleCAS Google Scholar
Stagno, J., Aphasizheva, I., Rosengarth, A., Luecke, H. & Aphasizhev, R. UTP-bound and apo structures of a minimal RNA uridylyltransferase. J. Mol. Biol.366, 882–899 (2007) ArticleCAS Google Scholar
Xiong, Y. & Steitz, T. A. Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template. Nature430, 640–645 (2004) ArticleCASADS Google Scholar
Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING Naturehttp://dx.doi.org/10.1038/nature12306 (30 May 2013)
Hartmann, R., Justesen, J., Sarkar, S. N., Sen, G. C. & Yee, V. C. Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′-5′-oligoadenylate synthetase. Mol. Cell12, 1173–1185 (2003) ArticleCAS Google Scholar
Donovan, J., Dufner, M. & Korennykh, A. Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proc. Natl Acad. Sci. USA110, 1652–1657 (2013) ArticleCASADS Google Scholar
Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell153, 1094–1107 (2013) ArticleCAS Google Scholar
Cavlar, T., Deimling, T., Ablasser, A., Hopfner, K. P. & Hornung, V. Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J.32, 1440–1450 (2013) ArticleCAS Google Scholar
Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol.364, 215–230 (2007) CAS Google Scholar
Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr.62, 1002–1011 (2006) Article Google Scholar
Morris, R. J., Perrakis, A. & Lamzin, V. S. ARP/wARP’s model-building algorithms. I. The main chain. Acta Crystallogr.58, 968–975 (2002) Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr.60, 2126–2132 (2004) Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr.66, 213–221 (2010) ArticleCAS Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007) ArticleCAS Google Scholar
Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr.60, 2210–2221 (2004) ArticleCAS Google Scholar
Rao, F. et al. Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase. Anal. Biochem.389, 138–142 (2009) ArticleCAS Google Scholar