D'Arc, M. et al. Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc. Natl Acad. Sci. USA112, E1343–E1352 (2015). ArticleCASPubMed Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010). ArticleCASPubMed Google Scholar
Rotger, M. et al. Genome-wide mRNA expression correlates of viral control in CD4+ T-cells from HIV-1-infected individuals. PLoS Pathog.6, e1000781 (2010). This study characterizes the gene expression profile abnormalities of the CD4+ T cells of patients with HIV-1 infection according to plasma viral load. ArticleCASPubMedPubMed Central Google Scholar
Hyrcza, M. D. et al. Distinct transcriptional profiles in ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+ T cells. J. Virol.81, 3477–3486 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sedaghat, A. R. et al. Chronic CD4+ T-cell activation and depletion in human immunodeficiency virus type 1 infection: type I interferon-mediated disruption of T-cell dynamics. J. Virol.82, 1870–1883 (2008). ArticleCASPubMed Google Scholar
Chelbi-Alix, M. K. & Wietzerbin, J. Interferon, a growing cytokine family: 50 years of interferon research. Biochimie89, 713–718 (2007). ArticleCASPubMed Google Scholar
Prokunina-Olsson, L. et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nature Genet.45, 164–171 (2013). ArticleCASPubMed Google Scholar
Takaoka, A. & Yanai, H. Interferon signalling network in innate defence. Cell. Microbiol.8, 907–922 (2006). ArticleCASPubMed Google Scholar
McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O'Garra, A. Type I interferons in infectious disease. Nature Rev. Immunol.15, 87–103 (2015). ArticleCAS Google Scholar
de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol.69, 912–920 (2001). CASPubMed Google Scholar
MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nature Rev. Immunol.12, 367–382 (2012). ArticleCAS Google Scholar
Schoggins, J. W. Interferon-stimulated genes: roles in viral pathogenesis. Curr. Opin. Virol.6, 40–46 (2014). ArticleCASPubMed Google Scholar
Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature472, 481–485 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. Y., Sanchez, D. J., Aliyari, R., Lu, S. & Cheng, G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc. Natl Acad. Sci. USA109, 4239–4244 (2012). ArticleCASPubMed Google Scholar
Schoggins, J. W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature505, 691–695 (2014). ArticleCASPubMed Google Scholar
Goubau, D., Deddouche, S. & Reis e Sousa, C. Cytosolic sensing of viruses. Immunity38, 855–869 (2013). ArticleCASPubMed Google Scholar
Gao, D. et al. Cyclic GMP–AMP synthase is an innate immune sensor of HIV and other retroviruses. Science341, 903–906 (2013). This study identifies cGAS as an important sensor of HIV. ArticleCASPubMed Google Scholar
Monroe, K. M. et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science343, 428–432 (2014). ArticleCASPubMed Google Scholar
Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity39, 1132–1142 (2013). ArticleCASPubMed Google Scholar
Jakobsen, M. R. et al. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc. Natl Acad. Sci. USA110, E4571–E4580 (2013). ArticleCASPubMed Google Scholar
Matreyek, K. A. & Engelman, A. Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses5, 2483–2511 (2013). ArticleCASPubMedPubMed Central Google Scholar
Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nature Immunol.11, 997–1004 (2010). ArticleCAS Google Scholar
Doitsh, G. et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell143, 789–801 (2010). This paper reports that the majority of CD4+ T cells depleted from HIV-1-infected tissues are abortively infected resting cells that die via IFI16-dependent pyroptosis. ArticleCASPubMedPubMed Central Google Scholar
Beignon, A. S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor–viral RNA interactions. J. Clin. Invest.115, 3265–3275 (2005). ArticleCASPubMedPubMed Central Google Scholar
Li, G. et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog.10, e1004291 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bruel, T. et al. Plasmacytoid dendritic cell dynamics tune interferon-alfa production in SIV-infected cynomolgus macaques. PLoS Pathog.10, e1003915 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kader, M. et al. Blocking TLR7- and TLR9-mediated IFN-α production by plasmacytoid dendritic cells does not diminish immune activation in early SIV infection. PLoS Pathog.9, e1003530 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tsang, J. et al. HIV-1 infection of macrophages is dependent on evasion of innate immune cellular activation. AIDS23, 2255–2263 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., Lee-Kirsch, M. A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nature Immunol.11, 1005–1013 (2010). ArticleCAS Google Scholar
Galao, R. P., Le Tortorec, A., Pickering, S., Kueck, T. & Neil, S. J. Innate sensing of HIV-1 assembly by tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe12, 633–644 (2012). ArticleCASPubMedPubMed Central Google Scholar
Galao, R. P., Pickering, S., Curnock, R. & Neil, S. J. Retroviral retention activates a Syk-dependent HemITAM in human tetherin. Cell Host Microbe16, 291–303 (2014). ArticleCASPubMedPubMed Central Google Scholar
Neil, S. & Bieniasz, P. Human immunodeficiency virus, restriction factors, and interferon. J. Interferon Cytokine Res.29, 569–580 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yan, N. & Chen, Z. J. Intrinsic antiviral immunity. Nature Immunol.13, 214–222 (2012). ArticleCAS Google Scholar
Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature418, 646–650 (2002). ArticleCASPubMed Google Scholar
Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature427, 848–853 (2004). ArticleCASPubMed Google Scholar
Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature474, 654–657 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature474, 658–661 (2011). ArticleCASPubMedPubMed Central Google Scholar
Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature451, 425–430 (2008). ArticleCASPubMed Google Scholar
Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe3, 245–252 (2008). ArticleCASPubMedPubMed Central Google Scholar
Malim, M. H. & Bieniasz, P. D. HIV restriction factors and mechanisms of evasion. Cold Spring Harb. Perspect. Med.2, a006940 (2012). This paper provides an overview of HIV restriction factors. ArticleCASPubMedPubMed Central Google Scholar
Schaller, T., Goujon, C. & Malim, M. H. AIDS/HIV. HIV interplay with SAMHD1. Science335, 1313–1314 (2012). ArticleCASPubMed Google Scholar
Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature480, 379–382 (2011). ArticleCASPubMed Google Scholar
Lahouassa, H. et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nature Immunol.13, 223–228 (2011). ArticleCAS Google Scholar
Ryoo, J. et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nature Med.20, 936–941 (2014). ArticleCASPubMed Google Scholar
Kirchhoff, F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe8, 55–67 (2010). ArticleCASPubMed Google Scholar
Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif–Cul5–SCF complex. Science302, 1056–1060 (2003). ArticleCASPubMed Google Scholar
Guo, Y. et al. Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif. Nature505, 229–233 (2014). ArticleCASPubMed Google Scholar
Neil, S. J. The antiviral activities of tetherin. Curr. Top. Microbiol. Immunol.371, 67–104 (2013). CASPubMed Google Scholar
Diamond, T. L. et al. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J. Biol. Chem.279, 51545–51553 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pillai, S. K. et al. Role of retroviral restriction factors in the interferon-α-mediated suppression of HIV-1 in vivo. Proc. Natl Acad. Sci. USA109, 3035–3040 (2012). ArticleCASPubMed Google Scholar
Armitage, A. E. et al. Conserved footprints of APOBEC3G on hypermutated human immunodeficiency virus type 1 and human endogenous retrovirus HERV-K(HML2) sequences. J. Virol.82, 8743–8761 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wood, N. et al. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog.5, e1000414 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, E. Y. et al. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog.10, e1004281 (2014). ArticleCASPubMedPubMed Central Google Scholar
Albin, J. S. & Harris, R. S. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev. Mol. Med.12, e4 (2010). ArticleCASPubMedPubMed Central Google Scholar
Neil, S. J., Sandrin, V., Sundquist, W. I. & Bieniasz, P. D. An interferon-α-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host Microbe2, 193–203 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ho, D. D. et al. Recombinant human interferon alfa-A suppresses HTLV-III replication in vitro. Lancet326, 602–604 (1985). Article Google Scholar
Kornbluth, R. S., Oh, P. S., Munis, J. R., Cleveland, P. H. & Richman, D. D. Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro. J. Exp. Med.169, 1137–1151 (1989). ArticleCASPubMed Google Scholar
Shirazi, Y. & Pitha, P. M. Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle. J. Virol.66, 1321–1328 (1992). CASPubMedPubMed Central Google Scholar
Meylan, P. R., Guatelli, J. C., Munis, J. R., Richman, D. D. & Kornbluth, R. S. Mechanisms for the inhibition of HIV replication by interferons-α, -β, and -γ in primary human macrophages. Virology193, 138–148 (1993). ArticleCASPubMed Google Scholar
Goujon, C. & Malim, M. H. Characterization of the alpha interferon-induced postentry block to HIV-1 infection in primary human macrophages and T cells. J. Virol.84, 9254–9266 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cheney, K. M. & McKnight, A. Interferon-α mediates restriction of human immunodeficiency virus type-1 replication in primary human macrophages at an early stage of replication. PLoS ONE5, e13521 (2010). ArticleCASPubMedPubMed Central Google Scholar
Goujon, C. et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature502, 559–562 (2013). ArticleCASPubMed Google Scholar
Liu, Z. et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe14, 398–410 (2013). ArticleCASPubMed Google Scholar
Kane, M. et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature502, 563–566 (2013). References 70–72 describe the anti-HIV-1 activities of MX2. ArticleCASPubMedPubMed Central Google Scholar
Melen, K. et al. Human MxB protein, an interferon-α-inducible GTPase, contains a nuclear targeting signal and is localized in the heterochromatin region beneath the nuclear envelope. J. Biol. Chem.271, 23478–23486 (1996). ArticleCASPubMed Google Scholar
Goujon, C. et al. Transfer of the amino-terminal nuclear envelope targeting domain of human MX2 converts MX1 into an HIV-1 resistance factor. J. Virol.88, 9017–9026 (2014). ArticleCASPubMedPubMed Central Google Scholar
Compton, A. A. et al. IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe16, 736–747 (2014). ArticleCASPubMed Google Scholar
Tartour, K. et al. IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their infectivity. Retrovirology11, 103 (2014). ArticleCASPubMedPubMed Central Google Scholar
Alsharifi, M., Mullbacher, A. & Regner, M. Interferon type I responses in primary and secondary infections. Immunol. Cell Biol.86, 239–245 (2008). ArticleCASPubMed Google Scholar
Sandler, N. G. et al. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature511, 601–605 (2014). This paper highlights the importance of type I interferons in the control of acute SIV infection. ArticleCASPubMedPubMed Central Google Scholar
Stacey, A. R. et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J. Virol.83, 3719–3733 (2009). ArticleCASPubMedPubMed Central Google Scholar
Parrish, N. F. et al. Phenotypic properties of transmitted founder HIV-1. Proc. Natl Acad. Sci. USA110, 6626–6633 (2013). ArticleCASPubMed Google Scholar
Lane, H. C. et al. Interferon-α in patients with asymptomatic human immunodeficiency virus (HIV) infection: a randomized, placebo-controlled trial. Ann. Intern. Med.112, 805–811 (1990). ArticleCASPubMed Google Scholar
Torriani, F. J. et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection in HIV-infected patients. N. Engl. J. Med.351, 438–450 (2004). ArticleCASPubMed Google Scholar
Neumann, A. et al. Differential antiviral effect of PEG-interferon-α-2b on HIV and HCV in the treatment of HIV/HCV co-infected patients. AIDS21, 1855–1865 (2007). ArticleCASPubMed Google Scholar
Asmuth, D. M. et al. Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon alfa-2a in HIV-1-monoinfected participants: a Phase II clinical trial. J. Infect. Dis.201, 1686–1696 (2010). This study clearly characterizes the effect of IFNα therapy on HIV-1 plasma viral load in patients infected with HIV-1. ArticleCASPubMedPubMed Central Google Scholar
Hubbard, J. J. et al. Host gene expression changes correlating with anti-HIV-1 effects in human subjects after treatment with peginterferon alfa-2a. J. Infect. Dis.205, 1443–1447 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sarasin-Filipowicz, M. et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc. Natl Acad. Sci. USA105, 7034–7039 (2008). ArticleCASPubMed Google Scholar
Vanderford, T. H. et al. Treatment of SIV-infected sooty mangabeys with a type-I IFN agonist results in decreased virus replication without inducing hyperimmune activation. Blood119, 5750–5757 (2012). ArticleCASPubMedPubMed Central Google Scholar
Azzoni, L. et al. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J. Infect. Dis.207, 213–222 (2013). ArticleCASPubMed Google Scholar
Sun, H. et al. Hepatitis C therapy with interferon-α and ribavirin reduces CD4 T-cell-associated HIV-1 DNA in HIV-1/hepatitis C virus-coinfected patients. J. Infect. Dis.209, 1315–1320 (2014). ArticleCASPubMed Google Scholar
Hardy, G. A. et al. Interferon-α is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS ONE8, e56527 (2013). ArticleCASPubMedPubMed Central Google Scholar
Herbeuval, J. P. et al. CD4+ T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood106, 3524–3531 (2005). ArticleCASPubMedPubMed Central Google Scholar
Marshall, H. D., Urban, S. L. & Welsh, R. M. Virus-induced transient immune suppression and the inhibition of T cell proliferation by type I interferon. J. Virol.85, 5929–5939 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fraietta, J. A. et al. Type I interferon upregulates Bak and contributes to T cell loss during human immunodeficiency virus (HIV) infection. PLoS Pathog.9, e1003658 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bosinger, S. E. et al. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J. Clin. Invest.119, 3556–3572 (2009). CASPubMedPubMed Central Google Scholar
Jacquelin, B. et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J. Clin. Invest.119, 3544–3555 (2009). CASPubMedPubMed Central Google Scholar
Harris, L. D. et al. Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques. J. Virol.84, 7886–7891 (2010). References 102–104 identify the differences in the type I IFN responses of pathogenic and non-pathogenic NHP models following SIV infection. ArticleCASPubMedPubMed Central Google Scholar
Jacquelin, B. et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-α during primary SIVagm infection. PLoS Pathog.10, e1004241 (2014). ArticleCASPubMedPubMed Central Google Scholar
Best, S., Le Tissier, P., Towers, G. & Stoye, J. P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature382, 826–829 (1996). ArticleCASPubMed Google Scholar
Swann, J. B. et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol.178, 7540–7549 (2007). ArticleCASPubMed Google Scholar
Zanoni, I. et al. IL-15 cis presentation is required for optimal NK cell activation in lipopolysaccharide-mediated inflammatory conditions. Cell Rep.4, 1235–1249 (2013). ArticleCASPubMed Google Scholar
Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J. & Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med.202, 637–650 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bahl, K., Huebner, A., Davis, R. J. & Welsh, R. M. Analysis of apoptosis of memory T cells and dendritic cells during the early stages of viral infection or exposure to Toll-like receptor agonists. J. Virol.84, 4866–4877 (2010). ArticleCASPubMedPubMed Central Google Scholar
Srivastava, S., Koch, M. A., Pepper, M. & Campbell, D. J. Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection. J. Exp. Med.211, 961–974 (2014). ArticleCASPubMedPubMed Central Google Scholar
Le Bon, A. et al. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity14, 461–470 (2001). ArticleCASPubMed Google Scholar
Hervas-Stubbs, S. et al. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res.17, 2619–2627 (2011). ArticleCASPubMed Google Scholar