Neural plasticity in the ageing brain (original) (raw)
Brody, H. Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J. Comp. Neurol.102, 511–516 (1955). ArticleCASPubMed Google Scholar
Coleman, P. D. & Flood, D. G. Neuron numbers and dendritic extent in normal aging and Alzheimer's disease. Neurobiol. Aging8, 521–545 (1987). ArticleCASPubMed Google Scholar
Ball, M. J. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol. (Berl.)37, 111–118 (1977). ArticleCAS Google Scholar
Brizzee, K. R., Ordy, J. M. & Bartus, R. T. Localization of cellular changes within multimodal sensory regions in aged monkey brain: possible implications for age-related cognitive loss. Neurobiol. Aging1, 45–52 (1980). ArticleCASPubMed Google Scholar
Morrison, J. H. & Hof, P. R. Life and death of neurons in the aging brain. Science278, 412–419 (1997). ArticleCASPubMed Google Scholar
West, M. J. New stereological methods for counting neurons. Neurobiol. Aging14, 275–285 (1993). ArticleCASPubMed Google Scholar
Pakkenberg, B. & Gundersen, H. J. Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurol.384, 312–320 (1997). ArticleCASPubMed Google Scholar
West, M. J., Coleman, P. D., Flood, D. G. & Troncoso, J. C. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet344, 769–772 (1994). A stereologically controlled investigation reporting preserved neuron number in most subregions of the hippocampus of healthy aged humans, which is distinct from individuals with Alzheimer's disease who show a significant decline in cell number. ArticleCASPubMed Google Scholar
Merrill, D. A., Roberts, J. A. & Tuszynski, M. H. Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates. J. Comp. Neurol.422, 396–401 (2000). ArticleCASPubMed Google Scholar
Peters, A., Leahu, D., Moss, M. B. & McNally, K. J. The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cereb. Cortex4, 621–635 (1994). ArticleCASPubMed Google Scholar
Gazzaley, A. H., Thakker, M. M., Hof, P. R. & Morrison, J. H. Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys. Neurobiol. Aging18, 549–553 (1997). ArticleCASPubMed Google Scholar
Keuker, J. I., Luiten, P. G. & Fuchs, E. Preservation of hippocampal neuron numbers in aged rhesus monkeys. Neurobiol. Aging24, 157–165 (2003). ArticlePubMed Google Scholar
Merrill, D. A., Chiba, A. A. & Tuszynski, M. H. Conservation of neuronal number and size in the entorhinal cortex of behaviorally characterized aged rats. J. Comp. Neurol.438, 445–456 (2001). ArticleCASPubMed Google Scholar
Rapp, P. R. & Gallagher, M. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc. Natl Acad. Sci. USA93, 9926–9930 (1996). Similar to findings in humans, this stereologically controlled experiment reveals that aged rats have no neuronal loss and so cell death cannot account for age-related behavioural impairments. ArticleCASPubMedPubMed Central Google Scholar
Rasmussen, T., Schliemann, T., Sorensen, J. C., Zimmer, J. & West, M. J. Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol. Aging17, 143–147 (1996). ArticleCASPubMed Google Scholar
Smith, D. E., Rapp, P. R., McKay, H. M., Roberts, J. A. & Tuszynski, M. H. Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J. Neurosci.24, 4373–4381 (2004). ArticleCASPubMedPubMed Central Google Scholar
Scheibel, M. E., Lindsay, R. D., Tomiyasu, U. & Scheibel, A. B. Progressive dendritic changes in the aging human limbic system. Exp. Neurol.53, 420–430 (1976). ArticleCASPubMed Google Scholar
Scheibel, A. B. The hippocampus: organizational patterns in health and senescence. Mech. Ageing Dev.9, 89–102 (1979). ArticleCASPubMed Google Scholar
Buell, S. J. & Coleman, P. D. Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia. Brain Res.214, 23–41 (1981). ArticleCASPubMed Google Scholar
Buell, S. J. & Coleman, P. D. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science206, 854–856 (1979). ArticleCASPubMed Google Scholar
Flood, D. G., Buell, S. J., Defiore, C. H., Horwitz, G. J. & Coleman, P. D. Age-related dendritic growth in dentate gyrus of human brain is followed by regression in the 'oldest old'. Brain Res.345, 366–368 (1985). ArticleCASPubMed Google Scholar
Flood, D. G., Buell, S. J., Horwitz, G. J. & Coleman, P. D. Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res.402, 205–216 (1987). ArticleCASPubMed Google Scholar
Hanks, S. D. & Flood, D. G. Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer's disease. I. CA1 of hippocampus. Brain Res.540, 63–82 (1991). ArticleCASPubMed Google Scholar
Flood, D. G., Guarnaccia, M. & Coleman, P. D. Dendritic extent in human CA2–3 hippocampal pyramidal neurons in normal aging and senile dementia. Brain Res.409, 88–96 (1987). ArticleCASPubMed Google Scholar
Flood, D. G. Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer's disease. II. Subiculum. Brain Res.540, 83–95 (1991). ArticleCASPubMed Google Scholar
Flood, D. G. Critical issues in the analysis of dendritic extent in aging humans, primates, and rodents. Neurobiol. Aging14, 649–654 (1993). ArticleCASPubMed Google Scholar
Turner, D. A. & Deupree, D. L. Functional elongation of CA1 hippocampal neurons with aging in Fischer 344 rats. Neurobiol. Aging12, 201–210 (1991). ArticleCASPubMed Google Scholar
Pyapali, G. K. & Turner, D. A. Increased dendritic extent in hippocampal CA1 neurons from aged F344 rats. Neurobiol. Aging17, 601–611 (1996). ArticleCASPubMed Google Scholar
Markham, J. A., McKian, K. P., Stroup, T. S. & Juraska, J. M. Sexually dimorphic aging of dendritic morphology in CA1 of hippocampus. Hippocampus15, 97–103 (2005). ArticleCASPubMed Google Scholar
Grill, J. D. & Riddle, D. R. Age-related and laminar-specific dendritic changes in the medial frontal cortex of the rat. Brain Res.937, 8–21 (2002). ArticleCASPubMed Google Scholar
Markham, J. A. & Juraska, J. M. Aging and sex influence the anatomy of the rat anterior cingulate cortex. Neurobiol. Aging23, 579–588 (2002). ArticlePubMed Google Scholar
de Brabander, J. M., Kramers, R. J. & Uylings, H. B. Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex. Eur. J. Neurosci.10, 1261–1269 (1998). ArticleCASPubMed Google Scholar
Uylings, H. B. & de Brabander, J. M. Neuronal changes in normal human aging and Alzheimer's disease. Brain Cogn.49, 268–276 (2002). ArticlePubMed Google Scholar
Williams, R. S. & Matthysse, S. Age-related changes in Down syndrome brain and the cellular pathology of Alzheimer disease. Prog. Brain Res.70, 49–67 (1986). ArticleCASPubMed Google Scholar
Curcio, C. A. & Hinds, J. W. Stability of synaptic density and spine volume in dentate gyrus of aged rats. Neurobiol. Aging4, 77–87 (1983). ArticleCASPubMed Google Scholar
Uemura, E. Age-related changes in the subiculum of Macaca mulatta: synaptic density. Exp. Neurol.87, 403–411 (1985). ArticleCASPubMed Google Scholar
Barnes, C. A. Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends Neurosci.17, 13–18 (1994). A comprehensive review of hippocampal region-specific changes in synaptic transmission, along with functional sparing, which challenged the traditional concept of ageing as a process of general deterioration. ArticleCASPubMed Google Scholar
Barnes, C. A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol.93, 74–104 (1979). The first report in aged rats of an increased LTP decay rate at the perforant path–granule cell synapse that correlates with the rate of forgetting a spatial problem on the Barnes circular platform task. ArticleCASPubMed Google Scholar
Barnes, C. A., Rao, G., Foster, T. C. & McNaughton, B. L. Region-specific age effects on AMPA sensitivity: electrophysiological evidence for loss of synaptic contacts in hippocampal field CA1. Hippocampus2, 457–468 (1992). ArticleCASPubMed Google Scholar
Segal, M. Changes in neurotransmitter actions in the aged rat hippocampus. Neurobiol. Aging3, 121–124 (1982). ArticleCASPubMed Google Scholar
Landfield, P. W. & Pitler, T. A. Prolonged Ca2+-dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science226, 1089–1092 (1984). The first report of a significant increase in the K+-dependent afterhyperpolarization of aged hippocampal CA1 pyramidal cells that is blocked by low concentrations of Ca2+. ArticleCASPubMed Google Scholar
Niesen, C. E., Baskys, A. & Carlen, P. L. Reversed ethanol effects on potassium conductances in aged hippocampal dentate granule neurons. Brain Res.445, 137–141 (1988). ArticleCASPubMed Google Scholar
Kerr, D. S., Campbell, L. W., Hao, S. Y. & Landfield, P. W. Corticosteroid modulation of hippocampal potentials: increased effect with aging. Science245, 1505–1509 (1989). ArticleCASPubMed Google Scholar
Potier, B., Lamour, Y. & Dutar, P. Age-related alterations in the properties of hippocampal pyramidal neurons among rat strains. Neurobiol. Aging14, 17–25 (1993). ArticleCASPubMed Google Scholar
Potier, B., Rascol, O., Jazat, F., Lamour, Y. & Dutar, P. Alterations in the properties of hippocampal pyramidal neurons in the aged rat. Neuroscience48, 793–806 (1992). ArticleCASPubMed Google Scholar
Pitler, T. A. & Landfield, P. W. Aging-related prolongation of calcium spike duration in rat hippocampal slice neurons. Brain Res.508, 1–6 (1990). ArticleCASPubMed Google Scholar
Barnes, C. A. & McNaughton, B. L. Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence. J. Physiol. (Lond.)309, 473–485 (1980). ArticleCAS Google Scholar
Reynolds, J. N. & Carlen, P. L. Diminished calcium currents in aged hippocampal dentate gyrus granule neurones. Brain Res.479, 384–390 (1989). ArticleCASPubMed Google Scholar
Luebke, J. I. & Rosene, D. L. Aging alters dendritic morphology, input resistance, and inhibitory signaling in dentate granule cells of the rhesus monkey. J. Comp. Neurol.460, 573–584 (2003). ArticlePubMed Google Scholar
Moyer, J. R. Jr, Thompson, L. T., Black, J. P. & Disterhoft, J. F. Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner. J. Neurophysiol.68, 2100–2109 (1992). ArticleCASPubMed Google Scholar
Thibault, O. & Landfield, P. W. Increase in single L-type calcium channels in hippocampal neurons during aging. Science272, 1017–1020 (1996). The first evidence that the increase in voltage-activated Ca2+influx in aged CA1 hippocampal neurons is due to an age-related increase in L-type Ca2+channels. ArticleCASPubMed Google Scholar
Toescu, E. C., Verkhratsky, A. & Landfield, P. W. Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci.27, 614–620 (2004). ArticleCASPubMed Google Scholar
Foster, T. C. & Norris, C. M. Age-associated changes in Ca2+-dependent processes: relation to hippocampal synaptic plasticity. Hippocampus7, 602–612 (1997). ArticleCASPubMed Google Scholar
Landfield, P. W. Hippocampal neurobiological mechanisms of age-related memory dysfunction. Neurobiol. Aging9, 571–579 (1988). ArticleCASPubMed Google Scholar
Tombaugh, G. C., Rowe, W. B. & Rose, G. M. The slow afterhyperpolarization in hippocampal CA1 neurons covaries with spatial learning ability in aged Fisher 344 rats. J. Neurosci.25, 2609–2616 (2005). ArticleCASPubMedPubMed Central Google Scholar
Barnes, C. A., McNaughton, B. L. & O'Keefe, J. Loss of place specificity in hippocampal complex spike cells of senescent rat. Neurobiol. Aging4, 113–119 (1983). ArticleCASPubMed Google Scholar
Markus, E. J., Barnes, C. A., McNaughton, B. L., Gladden, V. L. & Skaggs, W. E. Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus4, 410–421 (1994). ArticleCASPubMed Google Scholar
Mizumori, S. J., Lavoie, A. M. & Kalyani, A. Redistribution of spatial representation in the hippocampus of aged rats performing a spatial memory task. Behav. Neurosci.110, 1006–1016 (1996). ArticleCASPubMed Google Scholar
Barnes, C. A., Suster, M. S., Shen, J. & McNaughton, B. L. Multistability of cognitive maps in the hippocampus of old rats. Nature388, 272–275 (1997). The first report of altered stability of hippocampal place maps in aged rats, which correlates with the bimodal performance of aged rats on the spatial version of the Morris swim task. ArticleCASPubMed Google Scholar
Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E. & Weaver, K. L. The effect of aging on experience-dependent plasticity of hippocampal place cells. J. Neurosci.17, 6769–6782 (1997). Many hippocampal place cells were recorded simultaneously in young and aged rats to reveal that behaviourally induced plasticity mechanisms are defective in aged rats. ArticleCASPubMedPubMed Central Google Scholar
Tanila, H., Shapiro, M., Gallagher, M. & Eichenbaum, H. Brain aging: changes in the nature of information coding by the hippocampus. J. Neurosci.17, 5155–5166 (1997). ArticleCASPubMedPubMed Central Google Scholar
Smith, A. C., Gerrard, J. L., Barnes, C. A. & McNaughton, B. L. Effect of age on burst firing characteristics of rat hippocampal pyramidal cells. Neuroreport11, 3865–3871 (2000). ArticleCASPubMed Google Scholar
Oler, J. A. & Markus, E. J. Age-related deficits in the ability to encode contextual change: a place cell analysis. Hippocampus10, 338–350 (2000). ArticleCASPubMed Google Scholar
Wilson, I. A., Ikonen, S., Gallagher, M., Eichenbaum, H. & Tanila, H. Age-associated alterations in place cells are subregion specific. J. Neurosci.25, 6877–6886 (2005). The first paper to report a distinction between the impact of ageing on CA1 and CA3 networks. This makes it clear that these areas cannot be combined when age comparisons are made. ArticleCASPubMedPubMed Central Google Scholar
Chang, Y. M., Rosene, D. L., Killiany, R. J., Mangiamele, L. A. & Luebke, J. I. Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cereb. Cortex15, 409–418 (2005). ArticlePubMed Google Scholar
Bondareff, W. & Geinisman, Y. Loss of synapses in the dentate gyrus of the senescent rat. Am. J. Anat.145, 129–136 (1976). ArticleCASPubMed Google Scholar
Geinisman, Y., Bondareff, W. & Dodge, J. T. Partial deafferentation of neurons in the dentate gyrus of the senescent rat. Brain Res.134, 541–545 (1977). ArticleCASPubMed Google Scholar
Geinisman, Y., de Toledo-Morrell, L. & Morrell, F. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats. Proc. Natl Acad. Sci. USA83, 3027–3031 (1986). ArticleCASPubMedPubMed Central Google Scholar
Geinisman, Y., de Toledo-Morrell, L., Morrell, F., Persina, I. S. & Rossi, M. Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased stereological dissector technique. Hippocampus2, 437–444 (1992). ArticleCASPubMed Google Scholar
Barnes, C. A., Rao, G. & Houston, F. P. LTP induction threshold change in old rats at the perforant path–granule cell synapse. Neurobiol. Aging21, 613–620 (2000). ArticleCASPubMed Google Scholar
Foster, T. C., Barnes, C. A., Rao, G. & McNaughton, B. L. Increase in perforant path quantal size in aged F-344 rats. Neurobiol. Aging12, 441–448 (1991). ArticleCASPubMed Google Scholar
Barnes, C. A., Rao, G. & McNaughton, B. L. Increased electrotonic coupling in aged rat hippocampus: a possible mechanism for cellular excitability changes. J. Comp. Neurol.259, 549–558 (1987). ArticleCASPubMed Google Scholar
Geinisman, Y. et al. Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiol. Aging25, 407–416 (2004). ArticleCASPubMed Google Scholar
Nicholson, D. A., Yoshida, R., Berry, R. W., Gallagher, M. & Geinisman, Y. Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments. J. Neurosci.24, 7648–7653 (2004). ArticleCASPubMedPubMed Central Google Scholar
Landfield, P. W., Pitler, T. A. & Applegate, M. D. The effects of high Mg2+-to-Ca2+ ratios on frequency potentiation in hippocampal slices of young and aged rats. J. Neurophysiol.56, 797–811 (1986). ArticleCASPubMed Google Scholar
Deupree, D. L., Bradley, J. & Turner, D. A. Age-related alterations in potentiation in the CA1 region in F344 rats. Neurobiol. Aging14, 249–258 (1993). ArticleCASPubMed Google Scholar
Barnes, C. A., Rao, G. & Shen, J. Age-related decrease in the _N_-methyl-D-aspartateR-mediated excitatory postsynaptic potential in hippocampal region CA1. Neurobiol. Aging18, 445–452 (1997). ArticleCASPubMed Google Scholar
Rosenzweig, E. S., Rao, G., McNaughton, B. L. & Barnes, C. A. Role of temporal summation in age-related long-term potentiation-induction deficits. Hippocampus7, 549–558 (1997). ArticleCASPubMed Google Scholar
Barnes, C. A., Rao, G. & Orr, G. Age-related decrease in the Schaffer collateral-evoked EPSP in awake, freely behaving rats. Neural Plast.7, 167–178 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tombaugh, G. C., Rowe, W. B., Chow, A. R., Michael, T. H. & Rose, G. M. Theta-frequency synaptic potentiation in CA1 in vitro distinguishes cognitively impaired from unimpaired aged Fischer 344 rats. J. Neurosci.22, 9932–9940 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature361, 31–39 (1993). ArticleCASPubMed Google Scholar
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.25, 103–126 (2002). ArticleCASPubMed Google Scholar
Diana, G., Domenici, M. R., Loizzo, A., Scotti de Carolis, A. & Sagratella, S. Age and strain differences in rat place learning and hippocampal dentate gyrus frequency-potentiation. Neurosci. Lett.171, 113–116 (1994). ArticleCASPubMed Google Scholar
Diana, G., Scotti de Carolis, A., Frank, C., Domenici, M. R. & Sagratella, S. Selective reduction of hippocampal dentate frequency potentiation in aged rats with impaired place learning. Brain Res. Bull.35, 107–111 (1994). ArticleCASPubMed Google Scholar
Landfield, P. W. & Lynch, G. Impaired monosynaptic potentiation in in vitro hippocampal slices from aged, memory-deficient rats. J. Gerontol.32, 523–533 (1977). ArticleCASPubMed Google Scholar
Landfield, P. W., McGaugh, J. L. & Lynch, G. Impaired synaptic potentiation processes in the hippocampus of aged, memory-deficient rats. Brain Res.150, 85–101 (1978). ArticleCASPubMed Google Scholar
Dieguez, D. Jr & Barea-Rodriguez, E. J. Aging impairs the late phase of long-term potentiation at the medial perforant path–CA3 synapse in awake rats. Synapse52, 53–61 (2004). ArticleCASPubMedPubMed Central Google Scholar
Barnes, C. A., Rao, G. & Houston, F. P. LTP induction threshold change in old rats at the perforant path–granule cell synapse. Neurobiol. Aging21, 613–620 (2000). ArticleCASPubMed Google Scholar
Barnes, C. A., Rao, G. & McNaughton, B. L. Functional integrity of NMDA-dependent LTP induction mechanisms across the lifespan of F-344 rats. Learn. Mem.3, 124–137 (1996). ArticleCASPubMed Google Scholar
Deupree, D. L., Turner, D. A. & Watters, C. L. Spatial performance correlates with in vitro potentiation in young and aged Fischer 344 rats. Brain Res.554, 1–9 (1991). ArticleCASPubMed Google Scholar
Moore, C. I., Browning, M. D. & Rose, G. M. Hippocampal plasticity induced by primed burst, but not long-term potentiation, stimulation is impaired in area CA1 of aged Fischer 344 rats. Hippocampus3, 57–66 (1993). In contrast to earlier reports of intact hippocampal LTP induction (see references 38 and 83), the results of this study suggest that engaging plasticity-inducing mechanisms around threshold becomes more difficult with age. ArticleCASPubMed Google Scholar
Bear, M. F., Cooper, L. N. & Ebner, F. F. A physiological basis for a theory of synapse modification. Science237, 42–48 (1987). ArticleCASPubMed Google Scholar
Bear, M. F. & Malenka, R. C. Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol.4, 389–399 (1994). ArticleCASPubMed Google Scholar
Thibault, O., Hadley, R. & Landfield, P. W. Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J. Neurosci.21, 9744–9756 (2001). ArticleCASPubMedPubMed Central Google Scholar
Norris, C. M., Korol, D. L. & Foster, T. C. Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging. J. Neurosci.16, 5382–5392 (1996). Provides the first characterization of homosynaptic LTD/LTP reversal in aged rats and shows that plasticity induced by low-frequency stimulation is increased during ageing, probably as a result of Ca2+dysregulation. ArticleCASPubMedPubMed Central Google Scholar
Kumar, A. & Foster, T. C. Intracellular calcium stores contribute to increased susceptibility to LTD induction during aging. Brain Res.1031, 125–128 (2005). ArticleCASPubMed Google Scholar
Morgan, J. I., Cohen, D. R., Hempstead, J. L. & Curran, T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science237, 192–197 (1987). ArticleCASPubMed Google Scholar
Cole, A. J., Saffen, D. W., Baraban, J. M. & Worley, P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature340, 474–476 (1989). ArticleCASPubMed Google Scholar
Dragunow, M. et al. Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neurosci. Lett.101, 274–280 (1989). ArticleCASPubMed Google Scholar
Wisden, W. et al. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron4, 603–614 (1990). ArticleCASPubMed Google Scholar
Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neurosci.2, 1120–1124 (1999). ArticleCASPubMed Google Scholar
Platenik, J., Kuramoto, N. & Yoneda, Y. Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci.67, 335–364 (2000). ArticleCASPubMed Google Scholar
Jones, M. W. et al. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neurosci.4, 289–296 (2001). ArticleCASPubMed Google Scholar
Reti, I. M., Reddy, R., Worley, P. F. & Baraban, J. M. Prominent Narp expression in projection pathways and terminal fields. J. Neurochem.82, 935–944 (2002). ArticleCASPubMed Google Scholar
O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron23, 309–323 (1999). ArticleCASPubMed Google Scholar
Steward, O., Wallace, C. S., Lyford, G. L. & Worley, P. F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron21, 741–751 (1998). ArticleCASPubMed Google Scholar
Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron14, 433–445 (1995). ArticleCASPubMed Google Scholar
Guzowski, J. F. et al. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci.20, 3993–4001 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jiang, C. H., Tsien, J. Z., Schultz, P. G. & Hu, Y. The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc. Natl Acad. Sci. USA98, 1930–1934 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lee, C. K., Weindruch, R. & Prolla, T. A. Gene-expression profile of the ageing brain in mice. Nature Genet.25, 294–297 (2000). ArticleCASPubMed Google Scholar
Blalock, E. M. et al. Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J. Neurosci.23, 3807–3819 (2003). A report of the first gene-expression microarray experiment in behaviourally characterized rats, which shows an age-associated change in the resting levels of expression of several genes that correlates with cognitive decline. ArticleCASPubMedPubMed Central Google Scholar
Smith, D. R., Hoyt, E. C., Gallagher, M., Schwabe, R. F. & Lund, P. K. Effect of age and cognitive status on basal level AP-1 activity in rat hippocampus. Neurobiol. Aging22, 773–786 (2001). ArticleCASPubMed Google Scholar
Lanahan, A., Lyford, G., Stevenson, G. S., Worley, P. F. & Barnes, C. A. Selective alteration of long-term potentiation-induced transcriptional response in hippocampus of aged, memory-impaired rats. J. Neurosci.17, 2876–2885 (1997). ArticleCASPubMedPubMed Central Google Scholar
Small, S. A., Chawla, M. K., Buonocore, M., Rapp, P. R. & Barnes, C. A. Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc. Natl Acad. Sci. USA101, 7181–7186 (2004). The authors used different imaging methods in rats and monkeys and report a cross-species consensus that the dentate gyrus of the hippocampus is particularly vulnerable to the impact of ageing. These results are consistent with a previous report in humans. ArticleCASPubMedPubMed Central Google Scholar
Small, S. A., Tsai, W. Y., DeLaPaz, R., Mayeux, R. & Stern, Y. Imaging hippocampal function across the human life span: is memory decline normal or not? Ann. Neurol.51, 290–295 (2002). ArticlePubMed Google Scholar
Kentros, C. et al. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science280, 2121–2126 (1998). ArticleCASPubMed Google Scholar
Ekstrom, A. D., Meltzer, J., McNaughton, B. L. & Barnes, C. A. NMDA receptor antagonism blocks experience-dependent expansion of hippocampal 'place fields'. Neuron31, 631–638 (2001). ArticleCASPubMed Google Scholar
O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res.34, 171–175 (1971). ArticleCASPubMed Google Scholar
Jung, M. W. & McNaughton, B. L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus3, 165–182 (1993). ArticleCASPubMed Google Scholar
Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science261, 1055–1058 (1993). ArticleCASPubMed Google Scholar
McNaughton, B. L., Barnes, C. A. & O'Keefe, J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp. Brain Res.52, 41–49 (1983). ArticleCASPubMed Google Scholar
Muller, R. U., Bostock, E., Taube, J. S. & Kubie, J. L. On the directional firing properties of hippocampal place cells. J. Neurosci.14, 7235–7251 (1994). ArticleCASPubMedPubMed Central Google Scholar
Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci.15, 7079–7094 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA94, 8918–8921 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hebb, D. The Organization of Behavior: A Neurophysiological Theory (Wiley, New York, 1949). Google Scholar
Thompson, L. T. & Best, P. J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res.509, 299–308 (1990). ArticleCASPubMed Google Scholar
Agnihotri, N. T., Hawkins, R. D., Kandel, E. R. & Kentros, C. The long-term stability of new hippocampal place fields requires new protein synthesis. Proc. Natl Acad. Sci. USA101, 3656–3661 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tanila, H., Sipila, P., Shapiro, M. & Eichenbaum, H. Brain aging: impaired coding of novel environmental cues. J. Neurosci.17, 5167–5174 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lee, I., Yoganarasimha, D., Rao, G. & Knierim, J. J. Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature430, 456–459 (2004). ArticleCASPubMed Google Scholar
Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M. B. & Moser, E. I. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science305, 1295–1298 (2004). ArticleCASPubMed Google Scholar
Vazdarjanova, A. & Guzowski, J. F. Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci.24, 6489–6496 (2004). ArticleCASPubMedPubMed Central Google Scholar
Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B262, 23–81 (1971). ArticleCAS Google Scholar
McNaughton, B. L. & Morris, R. G. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci.10, 408–415 (1987). Article Google Scholar
Spencer, W. D. & Raz, N. Differential effects of aging on memory for content and context: a meta-analysis. Psychol. Aging10, 527–539 (1995). ArticleCASPubMed Google Scholar
McIntyre, J. S. & Craik, F. I. Age differences in memory for item and source information. Can. J. Psychol.41, 175–192 (1987). ArticleCASPubMed Google Scholar
Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E. & Manning, C. A. Age-related differences in an ecologically based study of route learning. Psychol. Aging12, 372–375 (1997). ArticleCASPubMed Google Scholar
Newman, M. & Kasznaik, A. Spatial memory and aging: performance on a human analog of the Morris water maze. Aging Neuropsychol. Cogn.7, 86–93 (2000). Similar to rats and monkeys, in a dry version of the Morris swim task, healthy aged humans are impaired in remembering the location of a landmark in relation to room cues. Article Google Scholar
Lai, Z. C., Moss, M. B., Killiany, R. J., Rosene, D. L. & Herndon, J. G. Executive system dysfunction in the aged monkey: spatial and object reversal learning. Neurobiol. Aging16, 947–954 (1995). ArticleCASPubMed Google Scholar
Rapp, P. R., Kansky, M. T. & Roberts, J. A. Impaired spatial information processing in aged monkeys with preserved recognition memory. Neuroreport8, 1923–1928 (1997). These results reveal substantial correspondence between rat and monkey data, showing that aged animals are impaired in tasks that test spatial memory. ArticleCASPubMed Google Scholar
Head, E. et al. Spatial learning and memory as a function of age in the dog. Behav. Neurosci.109, 851–858 (1995). ArticleCASPubMed Google Scholar
Markowska, A. L. et al. Individual differences in aging: behavioral and neurobiological correlates. Neurobiol. Aging10, 31–43 (1989). ArticleCASPubMed Google Scholar
Gallagher, M. & Rapp, P. R. The use of animal models to study the effects of aging on cognition. Annu. Rev. Psychol.48, 339–370 (1997). ArticleCASPubMed Google Scholar
Bach, M. E. et al. Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc. Natl Acad. Sci. USA96, 5280–5285 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rosenzweig, E. S. & Barnes, C. A. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog. Neurobiol.69, 143–179 (2003). ArticleCASPubMed Google Scholar
Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. Learn. Mem.10, 427–455 (2003). ArticlePubMed Google Scholar
Kishimoto, Y., Suzuki, M., Kawahara, S. & Kirino, Y. Age-dependent impairment of delay and trace eyeblink conditioning in mice. Neuroreport12, 3349–3352 (2001). ArticleCASPubMed Google Scholar
Knuttinen, M. G., Gamelli, A. E., Weiss, C., Power, J. M. & Disterhoft, J. F. Age-related effects on eyeblink conditioning in the F344 × BN F1 hybrid rat. Neurobiol. Aging22, 1–8 (2001). ArticleCASPubMed Google Scholar
Thompson, L. T., Moyer, J. R. Jr & Disterhoft, J. F. Trace eyeblink conditioning in rabbits demonstrates heterogeneity of learning ability both between and within age groups. Neurobiol. Aging17, 619–629 (1996). ArticleCASPubMed Google Scholar
Solomon, P. R. & Groccia-Ellison, M. E. Classic conditioning in aged rabbits: delay, trace, and long-delay conditioning. Behav. Neurosci.110, 427–435 (1996). ArticleCASPubMed Google Scholar
Finkbiner, R. G. & Woodruff-Pak, D. S. Classical eyeblink conditioning in adulthood: effects of age and interstimulus interval on acquisition in the trace paradigm. Psychol. Aging6, 109–117 (1991). ArticleCASPubMed Google Scholar
Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic 'scotomas'. J. Neurosci.13, 1479–1497 (1993). ArticleCASPubMedPubMed Central Google Scholar
Mair, R. G., Burk, J. A. & Porter, M. C. Lesions of the frontal cortex, hippocampus, and intralaminar thalamic nuclei have distinct effects on remembering in rats. Behav. Neurosci.112, 772–792 (1998). ArticleCASPubMed Google Scholar
Godefroy, O., Cabaret, M., Petit-Chenal, V., Pruvo, J. P. & Rousseaux, M. Control functions of the frontal lobes. Modularity of the central-supervisory system? Cortex35, 1–20 (1999). ArticleCASPubMed Google Scholar
Dunnett, S. B., Evenden, J. L. & Iversen, S. D. Delay-dependent short-term memory deficits in aged rats. Psychopharmacology (Berl.)96, 174–180 (1988). ArticleCAS Google Scholar
Moss, M. B., Rosene, D. L. & Peters, A. Effects of aging on visual recognition memory in the rhesus monkey. Neurobiol. Aging9, 495–502 (1988). ArticleCASPubMed Google Scholar
Moss, M. B., Killiany, R. J., Lai, Z. C., Rosene, D. L. & Herndon, J. G. Recognition memory span in rhesus monkeys of advanced age. Neurobiol. Aging18, 13–19 (1997). ArticleCASPubMed Google Scholar
Lyons-Warren, A., Lillie, R. & Hershey, T. Short- and long-term spatial delayed response performance across the lifespan. Dev. Neuropsychol.26, 661–678 (2004). ArticlePubMed Google Scholar
Wiig, K. A. & Burwell, R. D. Memory impairment on a delayed non-matching-to-position task after lesions of the perirhinal cortex in the rat. Behav. Neurosci.112, 827–838 (1998). ArticleCASPubMed Google Scholar
Rhodes, M. G. Age-related differences in performance on the Wisconsin card sorting test: a meta-analytic review. Psychol. Aging19, 482–494 (2004). When educational status and test modality are considered, compared with younger adults, aged humans show deficits on measures of executive function as assessed by the Wisconsin card sorting task, which correlates with an age-related decline in prefrontal cortex functioning. ArticlePubMed Google Scholar
Moore, T. L., Killiany, R. J., Herndon, J. G., Rosene, D. L. & Moss, M. B. Impairment in abstraction and set shifting in aged rhesus monkeys. Neurobiol. Aging24, 125–134 (2003). Relative to young adult monkeys, aged monkeys are impaired on an animal analogue of the Wisconsin card sorting task, which suggests an age-related decline in prefrontal cortex functioning. This is consistent with human studies. ArticlePubMed Google Scholar
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 4th edn (Academic, San Diego, 1998). Google Scholar
Gothard, K. M., Skaggs, W. E., Moore, K. M. & McNaughton, B. L. Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J. Neurosci.16, 823–835 (1996). ArticleCASPubMedPubMed Central Google Scholar
McNaughton, B. L., O'Keefe, J. & Barnes, C. A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods8, 391–397 (1983). ArticleCASPubMed Google Scholar
Gray, C. M., Maldonado, P. E., Wilson, M. & McNaughton, B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods63, 43–54 (1995). ArticleCASPubMed Google Scholar
Rao, G., Barnes, C. A. & McNaughton, B. L. Intracellular fluorescent staining with carboxyfluorescein: a rapid and reliable method for quantifying dye-coupling in mammalian central nervous system. J. Neurosci. Methods16, 251–263 (1986). ArticleCASPubMed Google Scholar