Lewis, B. P. et al. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). CASPubMed Google Scholar
Krichevsky, A. M. et al. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA9, 1274–1281 (2003). CASPubMedPubMed Central Google Scholar
Miska, E. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol.5, R68 (2004). PubMedPubMed Central Google Scholar
Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol.5, R13 (2004). PubMedPubMed Central Google Scholar
Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl Acad. Sci. USA101, 360–365 (2004). CASPubMed Google Scholar
Lagos-Quintana, M. et al. Identification of tissue-specific microRNA's from mouse. Curr. Biol.12, 735–739 (2002). CASPubMed Google Scholar
Zeng, Y. & Cullen, B. R. Recognition and cleavage of primary microRNA transcripts. Methods Mol. Biol.342, 49–56 (2006). CASPubMed Google Scholar
Zeng, Y., Yi, R. & Cullen, B. R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J.24, 138–148 (2005). CASPubMed Google Scholar
Yi, R. et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). CASPubMedPubMed Central Google Scholar
Lund, E. et al. Nuclear export of microRNA precursors. Science303, 95–98 (2004). CASPubMed Google Scholar
Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol.3, e236 (2005). PubMedPubMed Central Google Scholar
Saito, K. et al. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol.3, e235 (2005). PubMedPubMed Central Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). CASPubMed Google Scholar
He, L. & Hannon, G. L. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet.5, 522–531 (2004). CASPubMed Google Scholar
Hutvagner, G. & Zamore, P. D. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev.12, 225–232 (2002). CASPubMed Google Scholar
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773 (2005). An important study that suggested the global control of miRNAs over cell identity and the first to show a widespread effect of miRNAs on mRNA stability. CASPubMed Google Scholar
Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell122, 553–563 (2005). CASPubMed Google Scholar
Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell120, 623–634 (2005). CASPubMed Google Scholar
Sasaki, T. et al. Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics82, 323–330 (2003). CASPubMed Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). ArticleCASPubMed Google Scholar
Song, J. J. et al. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004). CASPubMed Google Scholar
Okamura, K. et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev.18, 1655–1666 (2004). CASPubMedPubMed Central Google Scholar
Caudy, A. A. et al. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.16, 2491–2496 (2002). CASPubMedPubMed Central Google Scholar
Caudy, A. A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature425, 411–414 (2003). CASPubMed Google Scholar
Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science301, 1921–1925 (2003). CASPubMed Google Scholar
Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev.16, 720–728 (2002). CASPubMedPubMed Central Google Scholar
Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell116, 831–841 (2004). CASPubMed Google Scholar
Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol.4, e210 (2006). PubMedPubMed Central Google Scholar
Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nature Cell Biol.7, 1261–1266 (2005). PubMed Google Scholar
Sen, G. L. & Blau, H. M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biol.7, 633–636 (2005). CASPubMed Google Scholar
Eystathioy, T. et al. Clinical and serological associations of autoantibodies to GW bodies and a novel cytoplasmic autoantigen GW182. J. Mol. Med.81, 811–818 (2003). CASPubMed Google Scholar
Ding, L. et al. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell19, 437–447 (2005). CASPubMed Google Scholar
Chalfie, M., Horvitz, H. R. & Sulston, J. E. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell24, 59–69 (1981). CASPubMed Google Scholar
Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell57, 49–57 (1989). CASPubMed Google Scholar
Zhang, B., Pan, X. & Anderson, T. A. MicroRNA: a new player in stem cells. J. Cell Physiol.209, 266–269 (2006). CASPubMed Google Scholar
Kataoka, Y., Takeichi, M. & Uemura, T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells6, 313–325 (2001). CASPubMed Google Scholar
Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nature Rev. Genet.6, 893–904 (2005). CASPubMed Google Scholar
Aboobaker, A. A. et al. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl Acad. Sci. USA102, 18017–18022 (2005). CASPubMedPubMed Central Google Scholar
Mansfield, J. H. et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nature Genet.36, 1079–1083 (2004). A highly novel method to detect miRNA expression patterns in the whole organism. CASPubMed Google Scholar
Ronshaugen, M. et al. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev.19, 2947–2952 (2005). CASPubMedPubMed Central Google Scholar
Garzon, R. et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc. Natl Acad. Sci. USA103, 5078–5083 (2006). CASPubMedPubMed Central Google Scholar
Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). Deepened interest in an important feature of the HOX gene loci, specifically the relationship between the physical location of a gene and its function. CASPubMed Google Scholar
Greer, J. M. & M. R. Capecchi Hoxb8 is required for normal grooming behavior in mice. Neuron33, 23–34 (2002). CASPubMed Google Scholar
Giraldez, A. J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science308, 833–838 (2005). CASPubMed Google Scholar
Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science309, 310–311 (2005). CASPubMed Google Scholar
Leaman, D. et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell121, 1097–1108 (2005). CASPubMed Google Scholar
Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet.35, 215–217 (2003). CASPubMed Google Scholar
Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature426, 845–849 (2003). CASPubMed Google Scholar
Johnston, R. J. Jr et al. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl Acad. Sci. USA102 12449–12454 (2005). CASPubMedPubMed Central Google Scholar
Chang, S. et al. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature430, 785–789 (2004). The above three studies from the Hobert lab are among the clearest demonstrations of miRNA circuitry and the complex relationship between miRNAs and transcription factors. CASPubMed Google Scholar
Wheeler, G. et al. Identification of new central nervous system specific mouse microRNAs. FEBS Lett.580, 2195–2200 (2006). CASPubMed Google Scholar
Krichevsky, A. M. et al. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells24, 857–864 (2006). CASPubMed Google Scholar
Smirnova, L. et al. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci.21, 1469–1477 (2006). Google Scholar
Lai, E. C., Burks, C. & Posakony, J. W. The K box, a conserved 3´ UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development125, 4077–4088 (1998). CASPubMed Google Scholar
Naguibneva, I. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biol.8, 278–284 (2006). CASPubMed Google Scholar
Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development127, 2863–2872 (2000). CASPubMed Google Scholar
Blackshaw, S. et al. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell107, 579–589 (2001). CASPubMed Google Scholar
Lin, S. Y. et al. The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell4, 639–650 (2003). CASPubMed Google Scholar
Irish, V., Lehmann, R. & Akam, M. The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature338, 646–648 (1989). CASPubMed Google Scholar
Pearson, B. J. & Doe, C. Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol.20, 619–647 (2004). CASPubMed Google Scholar
Cleary, M. D. & Doe, C. Q. Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes Dev.20, 429–434 (2006). CASPubMedPubMed Central Google Scholar
Hengst, U. et al. Functional and selective RNA interference in developing axons and growth cones. J. Neurosci.26, 5727–5732 (2006). CASPubMedPubMed Central Google Scholar
Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron32, 1013–1026 (2001). CASPubMed Google Scholar
Deglincerti, A., Hengst, U. & Jaffrey, S. R. Regulation of local protein translation in axons and growth cones by microRNAs. Soc. Neurosci. Abstr. 617. 9/B5 (2006).
Buss, R. R. & Oppenheim, R. W. Role of programmed cell death in normal neuronal development and function. Anat. Sci. Int.79, 191–197 (2004). PubMed Google Scholar
Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65, 6029–6033 (2005). CASPubMed Google Scholar
Harfe, B. D. et al. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA102, 10898–10903 (2005). CASPubMedPubMed Central Google Scholar
Martin, K. C. & Kosik, K. S. Synaptic tagging — who's it? Nature Rev. Neurosci.3, 813–820 (2002). CAS Google Scholar
Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature385, 533–536 (1997). CASPubMed Google Scholar
Nguyen, P. V. & Kandel, E. R. Brief theta-burst stimulation induces a transcription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn. Mem.4, 230–243 (1997). CASPubMed Google Scholar
Montarolo, P. G. et al. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science234, 1249–1254 (1986). CASPubMed Google Scholar
Davis, H. P. & Squire, L. R. Protein synthesis and memory: a review. Psychol. Bull.96, 518–559 (1984). CASPubMed Google Scholar
Aakalu, G. et al. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron30, 489–502 (2001). Set up the rationale for performing experiments that sought a role for miRNAs in local dendritic translation. CASPubMed Google Scholar
Bagni, C. et al. Chemical stimulation of synaptosomes modulates αCa2+/calmodulin-dependent protein kinase II mRNA association to polysomes. J. Neurosci.20, RC76 (2000). CASPubMedPubMed Central Google Scholar
Weiler, I. J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl Acad. Sci. USA94, 5395–5400 (1997). CASPubMedPubMed Central Google Scholar
Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science273, 1402–1406 (1996). CASPubMed Google Scholar
Huber, K. M., Roder, J. C. & Bear, M. F. Chemical induction of mGluR5- and protein synthesis--dependent long-term depression in hippocampal area CA1. J. Neurophysiol.86, 321–325 (2001). CASPubMed Google Scholar
Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science288, 1254–1257 (2000). CASPubMed Google Scholar
Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature439, 283–289 (2006). The strongest suggestion so far that miRNAs are important regulators of plasticity. CASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). CASPubMed Google Scholar
Krichevsky, A. M. & Kosik, K. S. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron32, 683–696 (2001). CASPubMed Google Scholar
Pinkstaff, J. K. et al. Internal initiation of translation of five dendritically localized neuronal mRNAs. Proc. Natl Acad. Sci. USA98, 2770–2775 (2001). CASPubMedPubMed Central Google Scholar
Ashraf, S. I. et al. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell124, 191–205 (2006). A paper that will grow in importance not only for its insights regarding miRNA regulation as a function of synaptic activity, but the potential of the approach to reveal a molecular-level image of brain activity. CASPubMed Google Scholar
Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci.24, 299–325 (2001). CASPubMed Google Scholar
Zhong, J., Zhang, T. & Bloch, L. M. Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neurosci.7, 17 (2006). PubMedPubMed Central Google Scholar
Glanzer, J. G. & Eberwine, J. H. Mechanisms of translational control in dendrites. Neurobiol. Aging24, 1105–1111 (2003). CASPubMed Google Scholar
Bockers, T. M. et al. Differential expression and dendritic transcript localization of Shank family members: identification of a dendritic targeting element in the 3′ untranslated region of Shank1 mRNA. Mol. Cell. Neurosci.26, 182–190 (2004). PubMed Google Scholar
Blichenberg, A. et al. Identification of a cis-acting dendritic targeting element in MAP2 mRNAs. J. Neurosci.19, 8818–8829 (1999). CASPubMedPubMed Central Google Scholar
Mayford, M. et al. The 3′-untranslated region of CaMKIIa is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc. Natl Acad. Sci. USA93, 13250–13255 (1996). CASPubMedPubMed Central Google Scholar
Kindler, S. et al. Molecular characterization of dendritically localized transcripts encoding MAP2. Brain Res. Mol. Brain Res.36, 63–69 (1996). CASPubMed Google Scholar
Mori, Y. et al. Two cis-acting elements in the 3′ untranslated region of α-CaMKII regulate its dendritic targeting. Nature Neurosci.3, 1079–1084 (2000). CASPubMed Google Scholar
Lugli, G. et al. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J. Neurochem.94, 896–905 (2005). CASPubMed Google Scholar
Steward, O. & Worley, P. F. Selective targeting of newly synthesized arc mRNA to active synapses requires NMDA receptor activation. Neuron30, 227–240 (2001). CASPubMed Google Scholar
Steward, O. et al. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron21, 741–751 (1998). CASPubMed Google Scholar
Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci.7, 113–117 (1998). Google Scholar
Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA102, 16426–16431 (2005). CASPubMedPubMed Central Google Scholar
Impey, S. et al. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nature Neurosci.1, 595–601 (1998). CASPubMed Google Scholar
Antar, L. N. & Bassell, G. J. Sunrise at the synapse: the FMRP mRNP shaping the synaptic interface. Neuron37, 555–558 (2003). CASPubMed Google Scholar
Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer6, 259–269 (2006). An excellent overview, among the several that have been written, on the emerging relationship between miRNAs and cancer. CAS Google Scholar
Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA103, 9136–9141 (2006). CASPubMedPubMed Central Google Scholar
Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet.38, 813–818 (2006). This paper is the leading edge of what will emerge as a windfall of genetic data related to polymorphisms at miRNA target sites with functional consequences. CASPubMed Google Scholar
Abelson, J. F. et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science310, 317–320 (2005). Presents a novel and provocative basis for a poorly understood syndrome. CASPubMed Google Scholar
Conaco, C. et al. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA103, 2422–2427 (2006). Opens the way to a network approach to the acquisition and maintenance of cell identity. CASPubMedPubMed Central Google Scholar
Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441, 537–541 (2006). An important cautionary note. CASPubMed Google Scholar