Cell-cycle control and cortical development (original) (raw)
Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci.2, 780–790 (2001). CAS Google Scholar
Sauer, F. C. Mitosis in the neural tube. J. Comp. Neurol.62, 377–405 (1935). Google Scholar
Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development131, 3133–3145 (2004). CASPubMed Google Scholar
Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development127, 5253–5263 (2000). A landmark study revealing the neurogenic potential of RGCs. CASPubMed Google Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714–720 (2001). CASPubMed Google Scholar
Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nature Neurosci.5, 308–315 (2002). CASPubMed Google Scholar
Gal, J. S. et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J. Neurosci.26, 1045–1056 (2006). CASPubMedPubMed Central Google Scholar
Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA101, 3196–3201 (2004). CASPubMedPubMed Central Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci.7, 136–144 (2004). An impressive time-lapse videomicroscopy study revealing the behaviour of cortical progenitor cells and showing the relationship between the VZ and the SVZ. CASPubMed Google Scholar
Howard, B., Chen, Y. & Zecevic, N. Cortical progenitor cells in the developing human telencephalon. Glia53, 57–66 (2006). PubMed Google Scholar
Frantz, G. D., Weimann, J. M., Levin, M. E. & McConnell, S. K. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J. Neurosci.14, 5725–5740 (1994). CASPubMedPubMed Central Google Scholar
Chen, B., Schaevitz, L. R. & McConnell, S. K. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl Acad. Sci. USA102, 17184–17189 (2005). CASPubMedPubMed Central Google Scholar
Chen, J. G., Rasin, M. R., Kwan, K. Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl Acad. Sci. USA102, 17792–17797 (2005). CASPubMedPubMed Central Google Scholar
Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron47, 817–831 (2005). CASPubMed Google Scholar
Britanova, O., Akopov, S., Lukyanov, S., Gruss, P. & Tarabykin, V. Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur. J. Neurosci.21, 658–668 (2005). PubMed Google Scholar
Zimmer, C., Tiveron, M. C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex14, 1408–1420 (2004). PubMed Google Scholar
Wu, S. X. et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl Acad. Sci. USA102, 17172–17177 (2005). CASPubMedPubMed Central Google Scholar
Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J. Comp. Neurol.479, 168–180 (2004). CASPubMed Google Scholar
Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development128, 1983–1993 (2001). CASPubMed Google Scholar
Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron47, 353–364 (2005). Shows that the OSVZ generates upper layer neurons in the primate and provides evidence that the G1-phase regulation of the cell cycle of cortical precursors determines cytoarchitectonic features. CASPubMedPubMed Central Google Scholar
Guillemot, F., Molnar, Z., Tarabykin, V. & Stoykova, A. Molecular mechanisms of cortical differentiation. Eur. J. Neurosci.23, 857–868 (2006). PubMed Google Scholar
Roy, K. et al. The Tlx gene regulates the timing of neurogenesis in the cortex. J. Neurosci.24, 8333–8345 (2004). CASPubMedPubMed Central Google Scholar
Schuurmans, C. et al. Sequential phases of cortical specification involve Neurogenin-dependent and independent pathways. EMBO J.23, 2892–2902 (2004). CASPubMedPubMed Central Google Scholar
Marin-Padilla, M. Dual origin of the mammalian neocortex and evolution of the subplate. Anat. Embryol.152, 109–126 (1978). CAS Google Scholar
Caviness, V. S. Neocortical histogenesis in the normal and reeler mice: a developmental study based upon [3H]-thymidine autoradiography. Dev. Brain Res.4, 293–302 (1982). Google Scholar
Rice, D. S. & Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci.24, 1005–1039 (2001). CASPubMed Google Scholar
Angevine, J. B. & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature192, 766–768 (1961). PubMed Google Scholar
Smart, I. H. M. & Smart, M. The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatal mice injected with (3H)thymidine on the eleventh and twelfth day post-conception. J. Anat.123, 515–525 (1977). CASPubMedPubMed Central Google Scholar
Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science183, 425–427 (1974). CASPubMed Google Scholar
Smart, I. H. M. & McSherry, G. M. Growth patterns in the lateral wall of the mouse telencephalon: II. Histological changes during and subsequent to the period of isocortical neuron production. J. Anat.134, 415–442 (1982). CASPubMedPubMed Central Google Scholar
Dehay, C., Giroud, P., Berland, M., Smart, I. & Kennedy, H. Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature366, 464–466 (1993). CASPubMed Google Scholar
Sur, M. & Rubenstein, J. L. Patterning and plasticity of the cerebral cortex. Science310, 805–810 (2005). A powerful synthesis of how intrinsic and extrinsic mechanisms determine arealization in the cerebral cortex. CASPubMed Google Scholar
Rash, B. G. & Grove, E. A. Area and layer patterning in the developing cerebral cortex. Curr. Opin. Neurobiol.16, 25–34 (2006). A comprehensive review of the mechanisms contributing to laminar and areal patterning in the cerebral cortex from mice to primates. CASPubMed Google Scholar
Smart, I. H. M., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and posmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex12, 37–53 (2002). Compares the embryonic compartments of rodents and monkeys and highlights numerous primate-specific features including the OSVZ. PubMed Google Scholar
Meyer, G., Schaaps, J. P., Moreau, L. & Goffinet, A. M. Embryonic and early fetal development of the human neocortex. J. Neurosci.20, 1858–1868 (2000). CASPubMedPubMed Central Google Scholar
Bystron, I., Rakic, P., Molnar, Z. & Blakemore, C. The first neurons of the human cerebral cortex. Nature Neurosci.9, 880–886 (2006). CASPubMed Google Scholar
Kostovic, I. & Rakic, P. Develomental history of the transient subplate zone in the visual cortex of the macaque monkey and human brain. J. Comp. Neurol.297, 441–470 (1990). CASPubMed Google Scholar
Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature417, 645–649 (2002). Shows that in primates a high percentage of cortical interneurons are generated in the germinal zones of the dorsal telencephalon. CASPubMed Google Scholar
Zecevic, N., Chen, Y. & Filipovic, R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol.491, 109–122 (2005). PubMedPubMed Central Google Scholar
Molnar, Z. et al. Comparative aspects of cerebral cortical development. Eur. J. Neurosci.23, 921–934 (2006). PubMedPubMed Central Google Scholar
Rockel, A. J., Hiorns, R. W. & Powell, T. P. S. The basic uniformity in structure of the neocortex. Brain103, 221–244 (1980). CASPubMed Google Scholar
Reznikov, K., Acklin, S. E. & van der Kooy, D. Clonal heterogeneity in the early embryonic rodent cortical germinal zone and the separation of subventricular from ventricular zone lineages. Dev. Dyn.210, 328–343 (1997). CASPubMed Google Scholar
Cunningham, J. J. & Roussel, M. F. Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ.12, 387–396 (2001). CASPubMed Google Scholar
Chenn, A. The simple life (of cortical progenitors). Neuron45, 817–819 (2005). CASPubMed Google Scholar
Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J.23, 2314–2324 (2004). CASPubMedPubMed Central Google Scholar
Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol.6, 777–788 (2005). Google Scholar
Hammerle, B. et al. Mnb/Dyrk1A is transiently expressed and asymmetrically segregated in neural progenitor cells at the transition to neurogenic divisions. Dev. Biol.246, 259–273 (2002). CASPubMed Google Scholar
Iacopetti, P. et al. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl Acad. Sci. USA96, 4639–4644 (1999). CASPubMedPubMed Central Google Scholar
Malatesta, P. et al. PC3 overexpression affects the pattern of cell division of rat cortical precursors. Mech. Dev.90, 17–28 (2000). CASPubMed Google Scholar
Koutmani, Y. et al. BM88 is an early marker of proliferating precursor cells that will differentiate into the neuronal lineage. Eur. J. Neurosci.20, 2509–2523 (2004). PubMed Google Scholar
Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science269, 981–985 (1995). CASPubMed Google Scholar
Polleux, F., Dehay, C. & Kennedy, H. The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex. J. Comp. Neurol.385, 95–116 (1997). CASPubMed Google Scholar
Polleux, F., Dehay, C., Moraillon, B. & Kennedy, H. Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas. J. Neurosci.17, 7763–7783 (1997). Provides evidence for area-specific regulation of cell-cycle kinetics in the germinal zones of the rodent cortex. CASPubMedPubMed Central Google Scholar
Oppenheim, R. W., Cole, T. & Prevette, D. Early regional variations in motoneuron numbers arise by differential proliferation in the chick embryo spinal cord. Dev. Biol.133, 468–474 (1989). CASPubMed Google Scholar
Caviness, V. S. Jr et al. Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. Cereb. Cortex13, 592–598 (2003). PubMed Google Scholar
Caviness, V. S., Takahashi, T. & Nowakowski, R. S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci.18, 379–383 (1995). CASPubMed Google Scholar
Tirone, F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J. Cell Physiol.187, 155–165 (2001). CASPubMed Google Scholar
Georgopoulou, N. et al. BM88 is a dual function molecule inducing cell cycle exit and neuronal differentiation of neuroblastoma cells via cyclin D1 down-regulation and pRB hypo-phosphorylation. J. Biol. Chem.281, 33606–33620 (2006). CASPubMed Google Scholar
Lukaszewicz, A., Savatier, P., Cortay, V., Kennedy, H. & Dehay, C. Contrasting effects of bFGF and NT3 on cell cycle kinetics of mouse cortical stem cells. J. Neurosci.22, 6610–6622 (2002). CASPubMedPubMed Central Google Scholar
Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci.116, 4947–4955 (2003). Demonstrates that cell-cycle duration of cortical precursors is heterogeneous and providesin vivoevidence for differentiative divisions having longer cell-cycle duration than proliferative divisions. CASPubMed Google Scholar
Hodge, R. D., D'Ercole, A. J. & O'Kusky, J. R. Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle re-entry in the embryonic cerebral cortex. J. Neurosci.24, 10201–10210 (2004). CASPubMedPubMed Central Google Scholar
Calegari, F., Haubensak, W., Haffner, C. & Huttner, W. B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci.25, 6533–6538 (2005). CASPubMedPubMed Central Google Scholar
Vernon, A. E., Devine, C. & Philpott, A. The cdk inhibitor p27Xic1 is required for differentiation of primary neurons in Xenopus. Development130, 85–92 (2003). CASPubMed Google Scholar
Nguyen, L. et al. p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev.20, 1511–1524 (2006). CASPubMedPubMed Central Google Scholar
Savatier, P., Lapillonne, H., van Grunsven, L. A., Rudkin, B. B. & Samarut, J. Withdrawal of differentiation inhibitory activity/leukaemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene12, 309–322 (1996). CASPubMed Google Scholar
Fluckiger, A. C. et al. Cell cycle features of primate embryonic stem cells. Stem Cells24, 547–556 (2006). CASPubMed Google Scholar
Mummery, C. L., van den Brink, C. E. & de Laat, S. W. Commitment to differentiation induced by retinoic acid in P19 embryonal carcinoma cells is cell cycle dependent. Dev. Biol.121, 10–19 (1987). CASPubMed Google Scholar
Baek, S. H. et al. Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc. Natl Acad. Sci. USA100, 3245–3250 (2003). CASPubMedPubMed Central Google Scholar
Kioussi, C. et al. Identification of a Wnt/Dvl/β-Catenin--> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell111, 673–685 (2002). CASPubMed Google Scholar
Oliver, T. G. et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl Acad. Sci. USA100, 7331–7336 (2003). CASPubMedPubMed Central Google Scholar
Burdon, T., Smith, A. & Savatier, P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol.12, 432–438 (2002). CASPubMed Google Scholar
Caviness, V. S. & Sidman, R. L. Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mice: an autoradiographic analysis. J. Comp. Neurol.148, 141–152 (1973). PubMed Google Scholar
Krushel, L. A., Johnston, J. G., Fishell, G., Tibshirani, R. & van der Kooy, D. Spatially localized neuronal cell lineages in the developing mammalian forebrain. Neuroscience53, 1035–1047 (1993). CASPubMed Google Scholar
Jensen, K. F. & Killackey, H. P. Subcortical projections from ectopic neocortical neurons. Proc. Natl Acad. Sci. USA81, 964–968 (1984). CASPubMedPubMed Central Google Scholar
Polleux, F., Dehay, C., Goffinet, A. & Kennedy, H. Pre- and post-mitotic events contribute to the progressive acquisition of area-specific connectional fate in the neocortex. Cereb. Cortex11, 1027–1039 (2001). CASPubMed Google Scholar
Polleux, F., Dehay, C. & Kennedy, H. Neurogenesis and commitment of corticospinal neurons in Reeler. J. Neurosci.18, 9910–9923 (1998). CASPubMedPubMed Central Google Scholar
McConnell, S. K. Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci.8, 945–974 (1988). CASPubMedPubMed Central Google Scholar
McConnell, S. K. & Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science254, 282–285 (1991). CASPubMed Google Scholar
Frantz, G. D. & McConnell, S. K. Restriction of late cerebral cortical progenitors to an upper layer fate. Neuron17, 55–61 (1996). CASPubMed Google Scholar
Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci.9, 743–751 (2006). An important study that overturns traditional ideas on corticogenesis by showing the key role of cell-intrinsic mechanisms in determining the fate of cortical precursors. CASPubMed Google Scholar
Fishell, G. Striatal precursors adopt cortical identities in response to local cues. Development121, 803–812 (1995). CASPubMed Google Scholar
Qian, X., Davis, A. A., Goderie, S. K. & Temple, S. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron18, 81–93 (1997). CASPubMed Google Scholar
Cremisi, F., Philpott, A. & Ohnuma, S. Cell cycle and cell fate interactions in neural development. Curr. Opin. Neurobiol.13, 26–33 (2003). CASPubMed Google Scholar
Ohnuma, S., Philpott, A. & Harris, W. A. Cell cycle and cell fate in the nervous system. Curr. Opin. Neurobiol.11, 66–73 (2001). CASPubMed Google Scholar
Mizutani, K. & Saito, T. Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex. Development132, 1295–1304 (2005). CASPubMed Google Scholar
Lien, W. H., Klezovitch, O., Fernandez, T. E., Delrow, J. & Vasioukhin, V. αE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science311, 1609–1612 (2006). CASPubMedPubMed Central Google Scholar
Kim, G. J., Shatz, C. J. & McConnell, S. K. Morphology of pioneer and follower growth cones in the developing cerebral cortex. J. Neurobiol.22, 629–642 (1991). CASPubMed Google Scholar
Miller, B., Chou, L. & Finlay, B. L. The early development of thalamocortical and corticothalamic projections. J. Comp. Neurol.335, 16–41 (1993). CASPubMed Google Scholar
McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate pioneers and the formation of descending connections from cerebral cortex. J. Neurosci.14, 1892–1907 (1994). CASPubMedPubMed Central Google Scholar
Reh, T. A. Cell-specific regulation of neuronal production in the larval frog retina. J. Neurosci.7, 3317–3324 (1987). CASPubMedPubMed Central Google Scholar
Smeyne, R. J. et al. Local control of granule cell generation by cerebellar Purkinje cells. Mol. Cell Neurosci.6, 230–251 (1995). CASPubMed Google Scholar
Viti, J., Gulacsi, A. & Lillien, L. Wnt regulation of progenitor maturation in the cortex depends on SHh or fibroblast growth factor 2. J. Neurosci.23, 5919–5927 (2003). CASPubMedPubMed Central Google Scholar
Lillien, L. & Raphael, H. BMP and FGF regulate the development of EGF-responsive neural progenitor cells. Development127, 4993–5005 (2000). CASPubMed Google Scholar
Rubenstein, J. L. et al. Genetic control of cortical regionalization and connectivity. Cereb. Cortex9, 524–532 (1999). CASPubMed Google Scholar
Dicicco-Bloom, E., Lu, N., Pintar, J. E. & Zhang, J. The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann. NY Acad. Sci.865, 274–289 (1998). CASPubMed Google Scholar
Haydar, T. F., Wang, F., Schwartz, M. L. & Rakic, P. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci.20, 5764–5774 (2000). CASPubMedPubMed Central Google Scholar
Schultze, B. & Korr, H. Cell kinetic studies of different cell types in the developing and adut brain of the rat and the mouse: a review. Cell Tissue Kinet.14, 309–325 (1981). CASPubMed Google Scholar
Smart, I. H. M. & Smart, M. Growth patterns in the lateral wall of the mouse telencephalon: I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas. J. Anat.134, 273–298 (1982). CASPubMedPubMed Central Google Scholar
Waechter, R. V. & Jaensch, B. Generation time of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res.46, 235–250 (1972). Google Scholar
Bruckner, G., Mares, V. & Biesold, D. Neurogenesis in the visual system of the rat. An autoradiographic investigation. J. Comp. Neurol.166, 245–255 (1976). CASPubMed Google Scholar
Schultze, B., Nowak, B. & Maurer, W. Cycle times of the neural epithelial cells of various types of neuron in the rat. An autoradiographic study. J. Comp. Neurol.158, 207–218 (1974). CASPubMed Google Scholar
Kaufmann, S. L. Lengthening of the generation cycle during embryonic differentiation of the mouse neural tube. Exp. Cell Res.49, 420–424 (1968). Google Scholar
Hoshino, K., Matsuzawa, T. & Murakami, U. Characteristics of the cell cycle of matrix cells in the mouse embryo during histogenesis of telencephalon. Exp. Cell Res.77, 89–94 (1973). CASPubMed Google Scholar
Schmahl, W. Developmental gradient of cell cycle in the telencephalic roof of the fetal NMRI-mouse. Anat. Embryol.167, 355–364 (1983). CAS Google Scholar
Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci.15, 6046–6057 (1995). CASPubMedPubMed Central Google Scholar
Cai, L., Hayes, N. L. & Nowakowski, R. S. Local homogeneity of cell cycle length in developing mouse cortex. J. Neurosci.17, 2079–2087 (1997). CASPubMedPubMed Central Google Scholar
Reznikov, K. & Van Der Kooy, D. Variability and partial synchrony of the cell cycle in the germinal zone of the early embryonic cerebral cortex. J. Comp. Neurol.360, 536–554 (1995). CASPubMed Google Scholar
Acklin, S. E. & van der Kooy, D. Clonal heterogeneity in the germinal zone of the developing rat telencephalon. Development118, 175–192 (1993). CASPubMed Google Scholar
Kornack, D. R. & Rakic, P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc. Natl Acad. Sci. USA95, 1242–1246 (1998). CASPubMedPubMed Central Google Scholar
Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci.18, 383–388 (1995). CASPubMed Google Scholar
Dehay, C., Savatier, P., Cortay, V. & Kennedy, H. Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J. Neurosci.21, 201–214 (2001). CASPubMedPubMed Central Google Scholar
Skoglund, T. S., Pasher, R. & Berthold, C. H. Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neurosci. Lett.208, 97–100 (1996). CASPubMed Google Scholar
Beaulieu, C. & Colonnier, M. Number of neurons in individual laminae of areas 3B, 4γ, and 6aα of the cat cerebral cortex: a comparison with major visual areas. J. Comp. Neurol.279, 228–234 (1989). CASPubMed Google Scholar
Eagleson, K. L., Lillien, L., Chan, A. V. & Levitt, P. Mechanisms specifying area fate in cortex include cell-cycle-dependent decisions and the capacity of progenitors to express phenotype memory. Development124, 1623–1630 (1997). CASPubMed Google Scholar
Kennedy, H. & Dehay, C. Cortical specification of mice and men. Cereb. Cortex3, 27–35 (1993). Google Scholar
Rakic, P. Specification of cerebral cortical areas. Science241, 170–176 (1988). An influential review, which needs to be read in detail, lays the foundation of the protomap hypothesis. CASPubMed Google Scholar
Grove, E. A. & Fukuchi-Shimogori, T. Generating the cerebral cortical area map. Annu. Rev. Neurosci.26, 355–380 (2003). CASPubMed Google Scholar
O'Leary, D. D. M. Do cortical areas emerge from a protocortex? Trends Neurosci.12, 400–406 (1989). This review laid out the protocortex hypothesis; although influential, it needs to be revisted. CASPubMed Google Scholar
Macagno, E. R. Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Branchiopoda). I. Interactions between embryonic retinular fibres and laminar neurons. Dev. Biol.73, 206–238 (1979). CASPubMed Google Scholar
Selleck, S. B., Gonzalez, C., Glover, D. M. & White, K. Regulation of the G1–S transition in postembryonic neuronal precursors by axon ingrowth. Nature355, 253–255 (1992). CASPubMed Google Scholar
Kollros, J. J. Peripheral control of midbrain mitotic activity in the frog. J. Comp. Neurol.205, 171–178 (1982). CASPubMed Google Scholar
Carney, R.S.E. et al. in Soc. Neurosci. Program Abstr. No 14, 839 (Society for Neuroscience, Washington DC, USA, 2004).
Polleux, F., Dehay, C. & Kennedy, H. Gradients and timing of the arrival of thalamic axons in the mouse neocortex. Soc. Neurosci. Abstr.22, 1012 (1996). Google Scholar
Dehay, C., Horsburgh, G., Berland, M., Killackey, H. & Kennedy, H. Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input. Nature337, 265–267 (1989). CASPubMed Google Scholar
Dehay, C., Giroud, P., Berland, M., Killackey, H. & Kennedy, H. Phenotypic characterisation of respecified visual cortex subsequent to prenatal enucleation in the monkey: development of acetylcholinesterase and cytochrome oxydase patterns. J. Comp. Neurol.376, 386–402 (1996). CASPubMed Google Scholar
Dehay, C., Giroud, P., Berland, M., Killackey, H. P. & Kennedy, H. The contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the foetal monkey on the boundaries and dimensions of striate and extrastriate cortex. J. Comp. Neurol.367, 70–89 (1996). CASPubMed Google Scholar
Lopez-Bendito, G. & Molnar, Z. Thalamocortical development: how are we going to get there? Nature Rev. Neurosci.4, 276–289 (2003). CAS Google Scholar
Donoghue, M. J. & Rakic, P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J. Neurosci.19, 5967–5979 (1999). CASPubMedPubMed Central Google Scholar
Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell119, 1027–1040 (2004). CASPubMed Google Scholar
Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature443, 167–172 (2006). CASPubMed Google Scholar
Popesco, M. C. et al. Human lineage-specific amplification, selection and neuronal expression of DUF1220 domains. Science313, 1304–1307 (2006). CASPubMed Google Scholar
Blaschke, A. J., Staley, K. & Chun, J. Widespread programmed cell death in proliferative and postmitotic regions of the foetal cerebral cortex. Development122, 1165–1174 (1996). CASPubMed Google Scholar
Rakic, P. Less is more: progenitor death and cortical size. Nature Neurosci.8, 981–982 (2005). CASPubMed Google Scholar
Depaepe, V. et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature435, 1244–1250 (2005). CASPubMed Google Scholar
King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science188, 107–116 (1975). CASPubMed Google Scholar
Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297, 365–369 (2002). CASPubMed Google Scholar
Sanada, K. & Tsai, L. H. G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell122, 119–131 (2005). CASPubMed Google Scholar
Chae, T. H., Kim, S., Marz, K. E., Hanson, P. I. & Walsh, C. A. The hyh mutation uncovers roles for α Snap in apical protein localization and control of neural cell fate. Nature Genet.36, 264–270 (2004). CASPubMed Google Scholar
Bond, J. & Woods, C. G. Cytoskeletal genes regulating brain size. Curr. Opin. Cell Biol.18, 95–101 (2006). CASPubMed Google Scholar
Fish, J. L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl Acad. Sci. USA103, 10438–10443 (2006). CASPubMedPubMed Central Google Scholar
Evans, P. D., Vallender, E. J. & Lahn, B. T. Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ. Gene375, 75–79 (2006). CASPubMed Google Scholar
Huttner, W. B. & Kosodo, Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr. Opin. Cell Biol.17, 648–657 (2005). CASPubMed Google Scholar
Van Hooser, S. D., Heimel, J. A., Chung, S. & Nelson, S. B. Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps. J. Neurosci.26, 7680–7692 (2006). CASPubMedPubMed Central Google Scholar
Kennedy, H., Douglas, R. J., Knoblauch, K. & Dehay, C. Self-organization and pattern formation in cortical networks in the primate. Novartis Found. Symp. in the press.
Lukaszewicz, A. et al. The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb. Cortex16 (Suppl. 1), 26–34 (2006). Google Scholar
Bishop, K. M., Goudreau, G. & O'Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science288, 344–349 (2000). CASPubMed Google Scholar
Rubenstein, J. L. & Rakic, P. Genetic control of cortical development. Cereb. Cortex9, 521–523 (1999). CASPubMed Google Scholar
Hebert, J. M., Mishina, Y. & McConnell, S. K. BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron35, 1029–1041 (2002). CASPubMed Google Scholar
Furuta, Y., Piston, D. W. & Hogan, B. L. M. Bone morphogenic proteins (BMPs) as regulators of dorsal forebrain development. Development124, 2203–2212 (1997). CASPubMed Google Scholar
Shimogori, T., Banuchi, V., Ng, H. Y., Strauss, J. B. & Grove, E. A. Embryonic signaling centres expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development131, 5639–5647 (2004). CASPubMed Google Scholar
Monuki, E. S. & Walsh, C. A. Mechanisms of cerebral cortical patterning in mice and humans. Nature Neurosci.4, 1199–1206 (2001). CASPubMed Google Scholar
Mallamaci, A. et al. The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex. J. Neurosci.20, 1109–1118 (2000). CASPubMedPubMed Central Google Scholar
Zhou, C., Tsai, S. Y. & Tsai, M. J. COUP-TFI: an intrinsic factor for early regionalization of the neocortex. Genes Dev.15, 2054–2059 (2001). CASPubMedPubMed Central Google Scholar
O'Leary, D. D. & Nakagawa, Y. Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr. Opin. Neurobiol.12, 14–25 (2002). CASPubMed Google Scholar
Garel, S., Huffman, K. J. & Rubenstein, J. L. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development130, 1903–1914 (2003). CASPubMed Google Scholar
Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science294, 1071–1074 (2001). A breakthrough study showing that FGF signalling affects both the relative dimensions and identity of cortical regions. CASPubMed Google Scholar
Shimogori, T. & Grove, E. A. Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J. Neurosci.25, 6550–6560 (2005). CASPubMedPubMed Central Google Scholar
Abu-Khalil, A., Fu, L., Grove, E. A., Zecevic, N. & Geschwind, D. H. Wnt genes define distinct boundaries in the developing human brain: implications for human forebrain patterning. J. Comp. Neurol.474, 276–288 (2004). CASPubMed Google Scholar
Dehay, C., Horsburgh, G., Berland, M., Killackey, H. & Kennedy, H. The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex. Dev. Brain Res.62, 137–141 (1991). CAS Google Scholar
Suner, I. & Rakic, P. Numerical relationship between neurons in the lateral geniculate nucleus and primary visual cortex in macaque monkeys. Vis. Neurosci.13, 585–590 (1996). CASPubMed Google Scholar
Zetterberg, A., Larsson, O. & Wiman, K. G. What is the restriction point? Curr. Opin. Cell Biol.7, 835–842 (1995). CASPubMed Google Scholar
Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev.16, 1149–1163 (1995). Google Scholar
Zindy, F. et al. Expression of INK4 inhibitors of cyclin D-dependent kinases during mouse brain development. Cell Growth Diff.8, 1139–1150 (1997). CASPubMed Google Scholar
van Lookeren Campagne, M. & Gill, R. Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1 and the proto-oncogene Bax. J. Comp. Neurol.397, 181–198 (1998). CASPubMed Google Scholar
Coskun, V. & Luskin, M. B. The expression pattern of the cell cycle inhibitor p19(INK4d) by progenitor cells of the rat embryonic telencephalon and neonatal anterior subventricular zone. J. Neurosci.21, 3092–3103 (2001). CASPubMedPubMed Central Google Scholar
Delalle, I., Takahashi, T., Nowakowski, R. S., Tsai, L. H. & Caviness, V. S. Jr. Cyclin E-p27 opposition and regulation of the G1 phase of the cell cycle in the murine neocortical PVE: a quantitative analysis of mRNA in situ hybridization. Cereb. Cortex9, 824–832 (1999). CASPubMed Google Scholar
Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev.16, 2699–2712 (2002). CASPubMedPubMed Central Google Scholar
Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia and pituitary tumors. Cell85, 707–720 (1996). CASPubMed Google Scholar
Ferguson, K. L. et al. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J.21, 3337–3346 (2002). CASPubMedPubMed Central Google Scholar
Korr, H. Proliferation of Different Cell Types in the Brain Springer. (Berlin, 1980). Google Scholar
Rakic, P. Kinetics of proliferation and latency between final division and onset of differentiation of cerebellar stellate and basket neurons. J. Comp. Neurol.147, 523–546 (1973). CASPubMed Google Scholar
Reznikov, K. Cell proliferation and cytogenesis in the mouse hippocampus. Adv. Anat. Embryol. Cell Biol.122, 1–83 (1990). Google Scholar