Gasser, T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev. Mol. Med.11, e22 (2009). ArticlePubMed Google Scholar
Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nature Genet.41, 1303–1307 (2009). ArticleCASPubMed Google Scholar
Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genet.41, 1308–1312 (2009). ArticleCASPubMed Google Scholar
Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron44, 595–600 (2004). ArticleCASPubMed Google Scholar
Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron44, 601–607 (2004). ArticleCASPubMed Google Scholar
Greggio, E. et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem.283, 16906–16914 (2008). ArticleCASPubMedPubMed Central Google Scholar
Greggio, E. et al. The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Biochem. Biophys. Res. Commun.389, 449–454 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kamikawaji, S., Ito, G. & Iwatsubo, T. Identification of the autophosphorylation sites of LRRK2. Biochemistry48, 10963–10975 (2009). ArticleCASPubMed Google Scholar
Klein, C. L. et al. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. J. Neurochem.111, 703–715 (2009). ArticleCASPubMed Google Scholar
Berger, Z., Smith, K. A. & Lavoie, M. J. Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry49, 5511–5523 (2010). ArticleCASPubMed Google Scholar
Gloeckner, C. J. et al. Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J. Proteome Res.9, 1738–1745 (2010). ArticleCASPubMed Google Scholar
Dzamko, N. et al. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem. J.430, 405–413 (2010). ArticleCASPubMed Google Scholar
Gehrke, S., Imai, Y., Sokol, N. & Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature466, 637–641 (2010). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nature Neurosci.12, 1826–1828 (2009). Google Scholar
Lin, X. et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein. Neuron64, 807–827 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tong, Y. et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc. Natl Acad. Sci. USA107, 9879–9884 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lee, B. D. et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nature Med.16, 998–1000 (2010). ArticleCASPubMed Google Scholar
Li, X. et al. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci.30, 1788–1797 (2010). ArticleCASPubMedPubMed Central Google Scholar
Melrose, H. L. et al. Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol. Dis.40, 503–517 (2010). ArticleCASPubMedPubMed Central Google Scholar
Galter, D. et al. LRRK2 expression linked to dopamine-innervated areas. Ann. Neurol.59, 714–719 (2006). ArticleCASPubMed Google Scholar
Guo, L. et al. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell Res.313, 3658–3670 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lewis, P. A. et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem. Biophys. Res. Commun.357, 1668–1671 (2007). Article Google Scholar
Greggio, E. et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis.23, 329–341 (2006). ArticleCASPubMed Google Scholar
Jaleel, M. et al. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem. J.405, 307–317 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nichols, R. J. et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. Biochem. J.430, 393–404 (2010). ArticleCASPubMed Google Scholar
West, A. B. et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA102, 16842–16847 (2005). ArticleCASPubMedPubMed Central Google Scholar
Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J.27, 2432–2443 (2008). ArticleCASPubMedPubMed Central Google Scholar
Greggio, E. & Cookson, M. R. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro1, e00002 (2009). ArticlePubMedPubMed Central Google Scholar
Lu, B. et al. Expression, purification and preliminary biochemical studies of the N-terminal domain of leucine-rich repeat kinase 2. Biochim. Biophys. Acta1804, 1780–1784 (2010). ArticleCASPubMed Google Scholar
Sen, S., Webber, P. J. & West, A. B. Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J. Biol. Chem.284, 36346–36356 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, M., Dobson, B., Glicksman, M. A., Yue, Z. & Stein, R. L. Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities. Biochemistry49, 2008–2017 (2010). ArticleCASPubMed Google Scholar
Smith, W. W. et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neurosci.9, 1231–1233 (2006). ArticleCASPubMed Google Scholar
Cookson, M. R., Hardy, J. & Lewis, P. A. Genetic neuropathology of Parkinson's disease. Int. J. Clin. Exp. Pathol.1, 217–231 (2008). CASPubMedPubMed Central Google Scholar
Gandhi, P. N., Wang, X., Zhu, X., Chen, S. G. & Wilson-Delfosse, A. L. The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J. Neurosci. Res.86, 1711–1720 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gillardon, F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-β isoforms and modulates microtubule stability-a point of convergence in parkinsonian neurodegeneration? J. Neurochem.110, 1514–1522 (2009). ArticleCASPubMed Google Scholar
Sancho, R. M., Law, B. M. & Harvey, K. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways. Hum. Mol. Genet.18, 3955–3968 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ko, H. S. et al. CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc. Natl Acad. Sci. USA106, 2897–2902 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hsu, C. H. et al. MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J. Neurochem.112, 1593–1604 (2010). ArticleCASPubMedPubMed Central Google Scholar
MacLeod, D. et al. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron52, 587–593 (2006). ArticleCASPubMed Google Scholar
Parisiadou, L. et al. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J. Neurosci.29, 13971–13980 (2009). ArticleCASPubMedPubMed Central Google Scholar
Plowey, E. D., Cherra, S. J., Liu, Y. J. & Chu, C. T. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY2015Y cells. J. Neurochem.105, 1048–1056 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sakaguchi-Nakashima, A., Meir, J. Y., Jin, Y., Matsumoto, K. & Hisamoto, N. LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr. Biol.17, 592–598 (2007). ArticleCASPubMed Google Scholar
Samann, J. et al. Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J. Biol. Chem.284, 16482–16491 (2009). ArticlePubMedPubMed Central Google Scholar
Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neurosci.12, 1129–1135 (2009). ArticleCASPubMed Google Scholar
Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab.11, 453–465 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kumar, A. et al. The Parkinson's disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation. PLoS ONE5, e8730 (2010). ArticlePubMedPubMed Central Google Scholar
Wider, C., Dickson, D. W. & Wszolek, Z. K. Leucine-rich repeat kinase 2 gene-associated disease: redefining genotype-phenotype correlation. Neurodegener. Dis.7, 175–179 (2010). ArticleCASPubMedPubMed Central Google Scholar
Taymans, J. M. & Cookson, M. R. Mechanisms in dominant parkinsonism: the toxic triangle of LRRK2, α-synuclein, and tau. Bioessays32, 227–235 (2010). ArticleCASPubMedPubMed Central Google Scholar
Auluck, P. K., Caraveo, G. & Lindquist, S. α-Synuclein: membrane interactions and toxicity in Parkinson's disease. Annu. Rev. Cell Dev. Biol.26, 211–233 (2010). ArticleCASPubMed Google Scholar
Biskup, S. et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann. Neurol.60, 557–569 (2006). ArticleCASPubMed Google Scholar
Rajput, A. et al. Parkinsonism, Lrrk2 G2019S, and tau neuropathology. Neurology67, 1506–1508 (2006). ArticleCASPubMed Google Scholar
Matenia, D. & Mandelkow, E. M. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem. Sci.34, 332–342 (2009). ArticleCASPubMed Google Scholar
Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nature Rev. Neurosci.10, 319–332 (2009). ArticleCAS Google Scholar
Kubo, M. et al. LRRK2 is expressed in B-2 but not in B-1 B cells, and downregulated by cellular activation. J. Neuroimmunol. 20 Aug 2010 (doi:10.1016/j.jneuroim.2010.07.021). ArticleCASPubMed Google Scholar
Nichols, R. J. et al. Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease. Biochem. J.424, 47–60 (2009). ArticleCASPubMed Google Scholar
Haugarvoll, K. & Wszolek, Z. K. Clinical features of LRRK2 parkinsonism. Parkinsonism Relat. Disord.15 (Suppl. 3), S205–S208 (2009). ArticlePubMed Google Scholar
Funayama, M. et al. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol.51, 296–301 (2002). ArticleCASPubMed Google Scholar
Funayama, M. et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol.57, 918–921 (2005). ArticleCASPubMed Google Scholar
Di Fonzo, A. et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet365, 412–415 (2005). ArticleCASPubMed Google Scholar
Gilks, W. P. et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet365, 415–416 (2005). CASPubMed Google Scholar
Kachergus, J. et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet.76, 672–680 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lesage, S. et al. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N. Engl. J. Med.354, 2422–2423 (2006). Article Google Scholar
Nichols, W. C. et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet365, 410–412 (2005). CASPubMed Google Scholar
Ozelius, L. J. et al. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med.354, 2424–2425 (2006). Article Google Scholar
Ishihara, L. et al. Clinical features of Parkinson disease patients with homozygous leucine-rich repeat kinase 2 G2019S mutations. Arch. Neurol.63, 1250–1254 (2006). ArticlePubMed Google Scholar
Kumari, U. & Tan, E. K. LRRK2 in Parkinson's disease: genetic and clinical studies from patients. FEBS J.276, 6455–6463 (2009). ArticleCASPubMed Google Scholar
Halliday, G. M. & McCann, H. The progression of pathology in Parkinson's disease. Ann. NY Acad. Sci.1184, 188–195 (2010). ArticlePubMed Google Scholar
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging24, 197–211 (2003). ArticlePubMed Google Scholar