Sosa, L. et al. IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nature Neurosci.9, 993–995 (2006). ArticleCASPubMed Google Scholar
Arimura, N. & Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature Rev. Neurosci.8, 194–205 (2007). ArticleCAS Google Scholar
Barnes, A. P., Solecki, D. & Polleux, F. New insights into the molecular mechanisms specifying neuronal polarity in vivo. Curr. Opin. Neurobiol.18, 44–52 (2008). ArticleCASPubMedPubMed Central Google Scholar
Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci.1, 173–179 (2000). ArticleCAS Google Scholar
Da Silva, J. S. & Dotti, C. G. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nature Rev. Neurosci.3, 694–704 (2002). ArticleCAS Google Scholar
Govek, E. E., Newey, S. E. & Van Aelst, L. The role of Rho GTPases in neuronal development. Genes Dev.19, 1–49 (2005). ArticleCASPubMed Google Scholar
Wiggin, G. R., Fawcett, J. P. & Pawson, T. Polarity proteins in axon specification and synaptogenesis. Dev. Cell8, 803–816 (2005). ArticleCASPubMed Google Scholar
Baas, P. W. Neuronal polarity: microtubules strike back. Nature Cell Biol.4, 194–195 (2002). An excellent short review that shifted attention to microtubules as key regulators of neuronal polarization. ArticleCAS Google Scholar
Dent, E. W. & Gentler, F. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron40, 209–227 (2003). ArticleCASPubMed Google Scholar
Witte, H. & Bradke, F. The role of the cytoskeleton during neuronal polarization. Curr. Opin. Neurobiol.18, 1–9 (2008). ArticleCAS Google Scholar
Desai, A. & Mitchison, T. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol.13, 83–117 (1997). ArticleCASPubMed Google Scholar
Nogales, E. Structural insights into microtubule function. Annu. Rev. Biophys. Biomol. Struct.30, 397–420 (2001). ArticleCASPubMed Google Scholar
Burbank, K. S. & Mitchison, T. Microtubule dynamic instability. Curr. Biol.25, R516–R517 (2006). ArticleCAS Google Scholar
Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell45, 329–342 (1986). ArticleCASPubMed Google Scholar
Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell6, 1619–1640 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gundersen, G. G. Evolutionary conservation of microtubule-capture mechanisms. Nature Rev. Mol. Cell Biol.3, 296–304 (2002). ArticleCAS Google Scholar
Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol.16, 106–112 (2004). ArticleCASPubMed Google Scholar
Siegrist, S. E. & Doe, C. Q. Microtubule-induced cortical cell polarity. Genes Dev.21, 483–496 (2007). ArticleCASPubMed Google Scholar
Yamada, K. M., Spooner, B. S. & Wessells, N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol.49, 614–635 (1971). ArticleCASPubMedPubMed Central Google Scholar
Yamada, K. M., Spooner, B. S. & Wessells, N. K. Axon growth: role of microfilaments and microtubules. Proc. Natl Acad. Sci. USA66, 1206–1212 (1970). ArticleCASPubMedPubMed Central Google Scholar
Daniels, M. P. Fine structural changes in neurons associated with colchicine inhibition of nerve fiber formation in vitro. J. Cell Biol.58, 463–470 (1973). ArticleCASPubMedPubMed Central Google Scholar
Drubin, D., Feinstein, S. C., Shooter, E. M. & Kirschner, M. Nerve growth factor induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J. Cell Biol.101, 1790–1807 (1985). Article Google Scholar
Ferreira, A., Busciglio, J. & Caceres, A. Microtubule formation and neurite outgrowth in cerebellar macroneurons that develop in vitro: evidence for the involvement of the microtubule-associated proteins MAP1a, HMW-MAP2 and tau. Dev. Brain Res.49, 215–228 (1989). ArticleCAS Google Scholar
Yu, W., Centonze, V. E., Ahmad, F. J. & Baas, P. W. Microtubule nucleation and release from the neuronal centrosomes. J. Cell Biol.122, 349–359 (1993). ArticleCASPubMed Google Scholar
Ahmad, F. J., Yu, W., McNally, F. J. & Baas, P. W. An essential role for katanin in severing microtubules in the neuron. J. Cell Biol.145, 305–315 (1999). ArticleCASPubMedPubMed Central Google Scholar
Karabay, A., Yu, W., Solowska, J. M., Baird, D. & Baas, P. W. Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. J. Neurosci.24, 5778–5788 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vale, R. D. The molecular motor toolbox for intracellular transport. Cell112, 467–480 (2003). ArticleCASPubMed Google Scholar
Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function and dynamics. Physiol. Rev.88, 1089–1118 (2008). ArticleCASPubMed Google Scholar
Baas, P. W. & Buster, D. W. Slow axonal transport and the genesis of neuronal morphology. J. Neurobiol.58, 3–17 (2004). ArticleCASPubMed Google Scholar
Ahmad, F. J., Joshi, H. C., Centonze, V. E. & Baas, P. W. Inhibition of microtubule nucleation at the neuronal centrosome compromises axon growth. Neuron12, 271–280 (1994). ArticleCASPubMed Google Scholar
Baird, D. H., Myers, K. A., Mogensen, M., Moss, D. & Baas, P. W. Distribution of the microtubule-related protein ninein in developing neurons. Neuropharmacology47, 677–683 (2004). ArticleCASPubMed Google Scholar
Baas, P. W., Karabay, A. & Qiang, L. Microtubules cut and run. Trends Cell Biol.15, 518–524 (2005). ArticleCASPubMed Google Scholar
Terada, S., Kinjo, M. & Hirokawa, N. Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell103, 141–155 (2000). ArticleCASPubMed Google Scholar
Kimura, T., Watanabe, H., Iwamatsu, A. & Kaibuchi, K. Tubulin and CRMP-2 complex is transported via kinesin-1. J. Neurochem.93, 1371–8213 (2005). ArticleCASPubMed Google Scholar
Baas, P. W. & Black, M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J. Cell Biol.111, 495–509 (1990). ArticleCASPubMed Google Scholar
Brown, A., Li, Y., Slaughter, T. & Black, M. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci.104, 339–352 (1993). ArticleCASPubMed Google Scholar
Brown, A., Slaughter, T. & Black, M. Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J. Cell Biol.119, 867–882 (1992). ArticleCASPubMed Google Scholar
Baas, P. W., Ahmad, F., Pienkowski, T., Brown, A. & Black, M. Sites of microtubule stabilization for the axon. J. Neurosci.13, 2177–2185 (1993). ArticleCASPubMedPubMed Central Google Scholar
Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci.8, 1454–1468 (1988). ArticleCASPubMedPubMed Central Google Scholar
Ferreira, A. & Cáceres, A. The expression of acetylated microtubules during axonal and dendritic growth in cerebellar macroneurons, which develop in vitro. Dev. Brain Res.49, 205–213 (1989). ArticleCAS Google Scholar
Arregui, C., Busciglio, J., Cáceres, A. & Barra, H. Tyrosinated and detyrosinated microtubules in axonal processes of cerebellar macroneurons grown in culture. J. Neurosci. Res.28, 171–181 (1991). ArticleCASPubMed Google Scholar
Dotti, C. G. & Banker, G. Intracellular organization of hippocampal neurons during the development of neuronal polarity. J. Cell Sci. Suppl.15, 75–84 (1991). ArticleCASPubMed Google Scholar
Witte, H., Neurkirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol.180, 619–632 (2008). A key paper that described how local microtubule stabilization in one neurite is a crucial event in specifying neuronal polarization. ArticleCASPubMedPubMed Central Google Scholar
Bradke, F. & Dotti, C. G. Vectorial cytoplasmic flow precedes axon formation. Neuron19, 1175–1186 (1997). ArticleCASPubMed Google Scholar
Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science283, 1931–1934 (1999). ArticleCASPubMed Google Scholar
Kunda, P., Paglini, G., Quiroga, S., Kosik, K. & Caceres, A. Evidence for the involvement of Tiam1 in axon formation. J. Neurosci.21, 2361–2372 (2001). ArticleCASPubMedPubMed Central Google Scholar
Goldberg, D. J. & Burmeister, D. W. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast. J. Cell Biol.103, 1921–1931 (1986). ArticleCASPubMed Google Scholar
Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem.273, 9797–9803 (1998). ArticleCASPubMed Google Scholar
Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol.162, 1045–1055 (2003). ArticleCASPubMedPubMed Central Google Scholar
Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol.16, 2166–2172 (2006). ArticleCASPubMed Google Scholar
Jacobson, C. B., Schnapp, B. & Banker, G. A. A change in the selective translocation of the kinesin-1 motor domain marks the initial specification of the axon. Neuron49, 797–804 (2006). ArticleCASPubMed Google Scholar
Inagaki, N. et al. CRMP-2 induces axons in cultured hippocampal neurons. Nature Neurosci.4, 781–782 (2001). ArticleCASPubMed Google Scholar
Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biol.4, 583–591 (2003). ArticleCAS Google Scholar
Shi, S. H., Cheng, T., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell112, 63–75 (2003). ArticleCASPubMed Google Scholar
Menager, C., Arimura, N., Fukata, Y. & Kaibuchi, K. PIP3 is involved in neuronal polarization and axon formation. J. Neurochem.89, 109–118 (2004). ArticleCASPubMed Google Scholar
Horiguchi, K., Hanada, T., Fukui, Y. & Chishti, A. H. Transport of PIP3 by GAKIN, a kinesin 3 family protein, regulates neuronal cell polarity. J. Cell Biol.174, 425–436 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gomis-Ruth, S., Wierenga, C. J., Bradke, F. Plasticity of polarization: changing dendrites into axons in neurons integrated in neuronal circuits. Curr. Biol.18, 992–1000 (2008). ArticlePubMedCAS Google Scholar
Tanaka, E. & Kirschner, M. W. Microtubule behavior in the growth cones of living neurons during axonal elongation. J. Cell Biol.115, 345–363 (1991). ArticleCASPubMed Google Scholar
Tanaka, E., Ho, T. & Kirschner, M. W. The role of microtubule dynamics in growth cone motility and axonal growth. J. Cell Biol.128, 139–155 (1995). ArticleCASPubMed Google Scholar
Manneville, J.-P. & Etienne-Manneville, S. Positioning centrosomes and spindle poles: looking at the periphery to find the cell centre. Biol. Cell98, 557–565 (2006). ArticleCASPubMed Google Scholar
Zolessi, F. R., Poggi, L., Wilkinson, C. J., Chine, C. B. & Harris, W. A. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev.1, 2 (2006). ArticlePubMedPubMed Central Google Scholar
Zmuda, J. F. & Rivas, R. J. The Golgi apparatus and centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell Motil. Cytoskeleton41, 18–38 (1998). ArticleCASPubMed Google Scholar
Lefcort, F. & Bentley, D. Organization of cytoskeletal elements and organelles preceding growth cone emergence from an identified neuron in situ. J. Cell Biol.108, 1737–1749 (1989). ArticleCASPubMed Google Scholar
De Anda, F. C. et al. Centrosome localization determines neuronal polarity. Nature436, 704–708 (2005). ArticlePubMedCAS Google Scholar
Goslin, K. & Banker, G. Rapid changes in the distribution of GAP-43 correlate with the expression of neuronal polarity during normal development and under experimental conditions. J. Cell Biol.110, 1319–1331 (1999). Article Google Scholar
Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Rev. Mol. Cell Biol.9, 309–322 (2008). ArticleCAS Google Scholar
Jaworski, J., Hoogenraad, C. C. & Akhmanova, A. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int. J. Biochem. Cell Biol.40, 619–637 (2007). ArticlePubMedCAS Google Scholar
Galjart, N. Clips and clasps and cellular dynamics. Nature Rev. Mol. Cell Biol.6, 487–498 (2006). ArticleCAS Google Scholar
Barth, A. I., Caro-Gonzalez, H. Y. & Nelson, W. J. Role of adenomatous polyposis coli (APC) and microtubules in directional cell migration and neuronal polarization. Semin. Cell Dev. Biol.19, 245–251 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, M., Zhou, X. Z. & Lu, P. K. Critical role for EB1 and APC interaction in the regulation of microtubule polymerization. Curr. Biol.11, 1062–1067 (2001). ArticleCASPubMed Google Scholar
Zunbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol.11, 44–49 (2001). Article Google Scholar
Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell104, 923–935 (2001). ArticleCASPubMed Google Scholar
Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol.168, 141–153 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sapir, T., Elbaum, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J.16, 6977–6984 (1997). ArticleCASPubMedPubMed Central Google Scholar
Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell109, 873–885 (2002). ArticleCASPubMed Google Scholar
Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev. Cell7, 871–883 (2004). ArticleCASPubMed Google Scholar
Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol.6, 820–830 (2004). ArticleCASPubMed Google Scholar
Votin, V., Nelson, J. W. & Barth, A. I. Neurite outgrowth involves adenomatous polyposis coli protein and β-catenin. J. Cell Sci.118, 5699–5708 (2005). ArticleCASPubMed Google Scholar
Shi, S. H., Cheng, T., Jan, L. Y. & Jan, Y. N. APC and GSK3β are involved in mPar3 targeting to the nascent axon and the establishment of neuronal polarity. Curr. Biol.14, 2025–2032 (2004). ArticleCASPubMed Google Scholar
Zhou, F.-Q., Zhou, J., Dedhar, S., Wu, Y. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK3β and functions on the microtubule plus end binding protein APC. Neuron42, 897–912 (2004). ArticleCASPubMed Google Scholar
Purro, S. A. et al. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J. Neurosci.28, 8644–8654 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rusan, N. M., Akong, K. & Peifer, M. Putting the model to the test: are APC proteins essential for neuronal polarity, axon outgrowth, and axon targeting? J. Cell Biol.183, 203–212 (2008). ArticleCASPubMedPubMed Central Google Scholar
Morrison, E. E., Moncur, P. M. & Askam, J. M. EB1 identifies sites of microtubule polymerization during neurite development. Mol. Brain Res.98, 145–152 (2002). ArticleCASPubMed Google Scholar
Jimenez, M., Paglini, E. M., Gonzalez-Billault, C., Caceres, A. & Avila, J. End-binding protein1 (EB1) complements microtubule-associated protein 1B during axogenesis. J. Neurosci. Res.80, 350–359 (2004). ArticleCAS Google Scholar
Geraldo, S., Khanzada, U. K., Parsons, M., Chilton, J. & Gordon-Weeks, P. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nature Cell Biol.10, 1181–1189 (2008). ArticleCASPubMed Google Scholar
Ayala, R., Shu, T. & Tsai, L. H. Trekking across the brain: the journey of neuronal migration. Cell128, 29–43 (2007). ArticleCASPubMed Google Scholar
Tsai, J.-W., Chen, Y., Kriegstein, A. R. & Valle, R. B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol.170, 935–945 (2005). ArticleCASPubMedPubMed Central Google Scholar
Grabham, P. W., Seale, G. E., Bennecib, M., Goldberg, D. & Vallee, R. B. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal growth. J. Neurosci.27, 5823–5834 (2007). ArticleCASPubMedPubMed Central Google Scholar
Friocourt, G. et al. Doublecortin functions at the extremities of growing neuronal processes. Cereb. Cortex13, 620–626 (2003). ArticlePubMed Google Scholar
Kappeler, C. et al. Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Hum. Mol. Genet.15, 1387–1400 (2006). ArticleCASPubMed Google Scholar
Koizumi, H., Tanaka, T. & Gleeson, J. G. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nature Neurosci.9, 779–786 (2006). ArticleCASPubMed Google Scholar
Bielas, S. L. et al. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell129, 579–591 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dent, E. W., Callaway, J. L., Szebenyi, G., Baas, P. W. & Kalil, K. Reorganization and movement of microtubules in growth cones and developing interstitial branches. J. Neurosci.9, 8894–8904 (1999). Article Google Scholar
Yu, W., Ahmad, F. J. & Baas, P. W. Microtubule fragmentation and partitioning during axon collateral branch formation. J. Neurosci.14, 5872–5884 (1994). ArticleCASPubMedPubMed Central Google Scholar
Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet.23, 296–303 (1999). ArticleCASPubMed Google Scholar
Errico, A., Claudiani, P., D'Addio, M. & Rugarli, E. L. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum. Mol. Genet.13, 2121–2132 (2002). Article Google Scholar
Roll-Mecak, A. & Vale, R. D. Making more microtubules by severing: a common theme of noncentrosomal microtubule arrays? J. Cell Biol.175, 849–851 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yu, W. et al. The microtubule-severing proteins spastin and katanin participate differently in the formation of axon branches. Mol. Biol. Cell19, 1485–1498 (2008). This study described different mechanisms used by microtubule severing proteins for regulating axon growth and collateral branching. ArticleCASPubMedPubMed Central Google Scholar
Qiang, L., Yu, W., Andreadis, A., Luo, M. & Baas, P. W. Tau protects microtubules in the axon from severing by katanin. J. Neurosci.26, 3120–3129 (2006). ArticleCASPubMedPubMed Central Google Scholar
Grenningloh, G., Soehrman, S., Bondallaz, P., Ruchti, E. & Cadas, H. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J. Neurobiol.58, 60–69 (2004). ArticleCASPubMed Google Scholar
Charbaut, E., Chauvin, S., Enslen, H., Zamaroczy, S. & Sobel, A. Two separate motifs cooperate to target stathmin-related proteins to the Golgi complex. J. Cell Sci.118, 2313–2323 (2005). ArticleCASPubMed Google Scholar
Manna, T., Grenningloh, G., Miller, H. P. & Wilson, L. Stathmin family protein SCG10 differentially regulates the plus and minus end dynamics of microtubules at steady state in vitro; implications for its role in neurite outgrowth. Biochemistry46, 3543–3542 (2008). ArticleCAS Google Scholar
Morii, H., Shiraishi-Yamaguchi, Y. & Mori, N. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons. J. Neurobiol.66, 1101–1114 (2006). ArticleCASPubMed Google Scholar
Poulain, F. E. & Sobel, A. The “SCG10-like protein” CLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10. Mol. Cell. Neurosci.34, 137–146 (2007). ArticleCASPubMed Google Scholar
Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell114, 229–239 (2003). ArticleCASPubMed Google Scholar
Cáceres, A. & Kosik, K. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature343, 461–463 (1990). ArticlePubMed Google Scholar
Cáceres, A., Mautino, J. & Kosik, K. Suppression of MAP-2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron9, 607–618 (1992). ArticlePubMed Google Scholar
Harada, A. et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature369, 488–491 (1994). ArticleCASPubMed Google Scholar
Takei, Y. et al. Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. J. Cell Biol.137, 1615–1626 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dawson, H. N. et al. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci.114, 1179–1187 (2001). ArticleCASPubMed Google Scholar
Meixner, A. et al. MAP1B is required for axon guidance and is involved in the development of the central and peripheral nervous system. J. Cell Biol.151, 1169–1178 (2000). ArticleCASPubMedPubMed Central Google Scholar
DiTella, M., Feiguin, F., Carri, N. & Cáceres, A. MAP-1b/Tau functional redundancy during laminin-enhanced axonal growth. J. Cell Sci.109, 467–477 (1996). ArticleCASPubMed Google Scholar
Takei, Y., Teng, J., Harada, A. & Hirokawa, N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J. Cell Biol.150, 989–1000 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sharma, V. M., Litersky, J. M., Bhaskar, K. & Lee, G. Tau impacts on growth-factor-stimulated actin remodeling. J. Cell Sci.120, 748–757 (2007). ArticleCASPubMed Google Scholar
Utreras, E. et al. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination. Dev. Neurosci.30, 200–210 (2008). ArticleCASPubMed Google Scholar
Gonzalez-Billault, C. et al. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. J. Neurobiol.58, 48–59 (2004). ArticleCASPubMed Google Scholar
Lucas, F. R., Goold, R. G., Gordon-Weeks, P. & Salinas, P. C. Inhibition of GSK3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodeling induced by WNT-7a or lithium. J. Cell Sci.111, 1351–1361 (1998). ArticleCASPubMed Google Scholar
Goold, R. G. & Gordon-Weeks, P. The MAP kinase pathway is upstream of the activation of GSK3β that enables it to phosphorylate MAP1B and contributes to the stimulation of axon growth. Mol. Cell. Neurosci.28, 524–534 (2005). ArticleCASPubMed Google Scholar
Zhou, F. Q. & Snider, W. D. Cell biology: GSK3-3β and microtubule assembly in axons. Science308, 211–214 (2005). ArticleCASPubMed Google Scholar
Jiang, H., Guo, W., Liang, X. & Rao, Y. Both the establishment and maintenance of neuronal polarity require active mechanisms: critical roles of GSK3β and its upstream regulators. Cell120, 123–135 (2005). CASPubMed Google Scholar
Yoshimura, T. et al. GSK3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell120, 137–149 (2005). ArticleCASPubMed Google Scholar
Gartner, A. & Hall, A. Neuronal polarity is regulated by glycogen synthase kinase-3 (GSK3β) independently of Akt/PKB serine phosphorylation. J. Cell Sci.119, 3927–3934 (2006). ArticleCASPubMed Google Scholar
Kim, W.-Y. et al. Essential roles for GSK3s and GSK3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron52, 981–996 (2006). An excellent study of GSK3 function in axon formation. ArticleCASPubMedPubMed Central Google Scholar
Garrido, J. J., Simon, D., Varea, O. & Wandosell, F. GSK3α and GSK3β are necessary for axon formation. FEBS Lett.581, 1579–1586 (2007). ArticleCASPubMed Google Scholar
Morfini, G., Szebenyi, G., Eluru, R., Ratner, N. & Brady, S. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J.21, 281–293 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shelly, M., Cancedda, L., Heilshorm, S., Sumbre, G. & Poo, M. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell129, 565–577 (2007). ArticleCASPubMed Google Scholar
Barnes, A. P. et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell129, 549–563 (2007). ArticleCASPubMed Google Scholar
Kishi, M., Pan, Y. A., Crump, J. G. & Sanes, J. Mammalian SAD kinases are required for neuronal polarization. Science307, 929–932 (2005). ArticleCASPubMed Google Scholar
Biernat, J. et al. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol. Biol. Cell13, 4013–4028 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. M. et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR3/PAR6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc. Natl Acad. Sci. USA103, 8534–8539 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chang, L., Jones, Y., Ellisman, M., Goldstein, L. S. B. & Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell4, 521–533 (2003). ArticleCASPubMed Google Scholar
Tarauk, T. et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol.173, 265–277 (2006). ArticleCAS Google Scholar
Burnette, D. et al. Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev. Cell15, 163–169 (2008). This work, together with that of reference 143, provided detailed evidence regarding the relationship between microtubules and actin filaments during neurite extension. ArticleCASPubMedPubMed Central Google Scholar
Zhang, X. F., Schaefer, A. W., Burnette, D. T., Schoonderwoert, V. & Forscher, P. Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron40, 931–944 (2003). ArticleCASPubMed Google Scholar
Da Silva, J. S. et al. RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J. Cell Biol.162, 1267–1279 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nishimura, T. et al. PAR-6-PAR-3 mediates Cdc42-induced rac activation through the rac GEFs STEF/Tiam1. Nature Cell Biol.7, 270–277 (2005). ArticleCASPubMed Google Scholar
Takefuji, M. et al. Rho-kinase modulates the function of STEF, a Rac GEF, through its phosphorylation. Biochem. Biophys. Res. Commun.355, 788–794 (2008). ArticleCAS Google Scholar
Nakayama, M. et al. Rho-kinase phosphorylates Par-3 and disrupts Par complex formation. Dev. Cell14, 205–215 (2008). ArticleCASPubMed Google Scholar
Birkenfeld, J., Nalbant, P., Yoon, S.-H. & Bokoch, G. M. Cellular functions of GEF-H1, a microtubule regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol.18, 210–219 (2008). ArticleCASPubMed Google Scholar
Watabe-Uchida, M., John, K. A., Janas, J. A., Newey, S. A. & Van Aelst, L. The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18. Neuron51, 727–739 (2006). ArticleCASPubMed Google Scholar
Chuang, J. et al. The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth. Dev. Cell9, 75–86 (2005). ArticleCASPubMed Google Scholar
Sharp, D. J. et al. Identification of a microtubule-associated motor protein essential for dendritic differentiation. J. Cell Biol.138, 833–843 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yu, W. et al. Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J. Neurosci.20, 5782–5790 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zheng, Y. et al. Dynein is required for polarized dendritic transport and uniform polarity orientation in axons. Nature Cell Biol.10, 1172–1180 (2008). This study described the role of dynein in establishing microtubule orientation and organelle distribution in axons and dendrites ofD. melanogasterda neurons. ArticleCASPubMed Google Scholar
Farah, C. A. & Leclerc, N. HMWMAP2: new perspectives on a pathway to dendritic identity. Cell Motil. Cytoskeleton65, 515–527 (2008). ArticlePubMedCAS Google Scholar
Harada, A., Teng, J., Takei, Y., Oguchi, K. & Hirokawa, N. MAP2 is required for dendritic elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J. Cell Biol.158, 541–549 (2002). ArticleCASPubMedPubMed Central Google Scholar
Khuchua, Z. et al. Deletion of the N-terminus of murine map2 by gene targeting disrupts hippocampal ca1 neuron architecture and alters contextual memory. Neuroscience119, 101–111 (2003). ArticleCASPubMed Google Scholar
Teng, J. et al. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth and microtubule organization. J. Cell Biol.155, 65–76 (2001). ArticleCASPubMedPubMed Central Google Scholar
Farah, C. A. et al. Interaction of microtubule-associated protein-2 and p63: a new link between microtubules and rough endoplasmic reticulum membranes in neurons. J. Biol. Chem.280, 9439–9449 (2005). ArticleCASPubMed Google Scholar
Szebenyi, G. et al. Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr. Biol.15, 1820–1826 (2005). ArticleCASPubMed Google Scholar
Ohkawa, N., Fujitani, K., Tokunaga, E., Furuya, S. & Inokuchi, K. The microtubule-destabilizer stathmin mediates the development of dendritic arbors in neuronal cells. J. Cell Sci.120, 1447–1456 (2007). ArticleCASPubMed Google Scholar
Vaillant, A. R. et al. Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron34, 985–998 (2002). ArticleCASPubMed Google Scholar
Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G. M. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron26, 371–382 (2000). ArticleCASPubMed Google Scholar
Hummel, T., Krukkert, K. Roos, J., Davis, G. & Klambt, C. Drosophila Futsch/22C10 is a MAP21B-like protein required for dendritic and axonal development. Neuron26, 357–370 (2000). ArticleCASPubMed Google Scholar
Ruiz-Canada, C. et al. New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Neuron42, 567–580 (2004). ArticleCASPubMedPubMed Central Google Scholar
Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell111, 319–330 (2002). ArticleCASPubMedPubMed Central Google Scholar
Franco, B. et al. Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. J. Neurosci.27, 5315–5325 (2004). Google Scholar
Salinas, P. C. & Zou, Y. Wnt signaling in neural circuit assembly. Annu. Rev. Neurosci.31, 339–358 (2008). ArticleCASPubMed Google Scholar
Trotta, N., Orso, G., Rossetto, M. G., Draga, A. & Broasle, K. The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Neuron14, 1135–1147 (2004). CAS Google Scholar
Kaech, S., Parmar, H., Roelandse, M., Bornmann, C. & Matus, A. Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites. Proc. Natl Acad. Sci. USA98, 7086–7092 (2001). ArticleCASPubMedPubMed Central Google Scholar
Halpain, S., Spencer, K. & Graber, S. Dynamics and pathology of dendritic spines. Prog. Brain Res.147, 29–37 (2005). ArticleCASPubMed Google Scholar
Westrum, L. E., Jones, D. H., Gray, E. G. & Barron, J. Microtubules, dendritic spines, and spines apparatuses. Cell Tissue Res.208, 171–181 (1980). ArticleCASPubMed Google Scholar
Westrum, L. E., Jones, D. H., Burgoyne, R. D. & Barron, J. Synaptic development and microtubule organization. Cell Tissue Res.231, 93–102 (1983). ArticleCASPubMed Google Scholar
Gray, E. G., Westrum, L. E., Burgoyne, R. D. & Barron, J. Synaptic organization and neuron microtubule distribution. Cell Tissue Res.226, 579–588 (1982). ArticleCASPubMed Google Scholar
Caceres, A., Payne, M. R., Binder, L. I. & Steward, O. Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc. Natl Acad. Sci. USA80, 1738–1742 (1983). ArticleCASPubMedPubMed Central Google Scholar
Hu, X., Viesselmann, C., Nam, S., Merriam, E. & Dent, E. W. Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci.28, 13094–13105 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jaworski, J. et al. Dynamic microtubules regulate spine morphology and synaptic plasticity. Neuron61, 85–100 (2009). ArticleCASPubMed Google Scholar
Penzes, P., Srivastava, D. P. & Woolfrey, K. V. Not just actin? A role for dynamic microtubules in dendritic spines. Neuron61, 3–5 (2009). ArticleCASPubMed Google Scholar
Pfenninger, K. H. et al. Regulation of membrane expansion at the nerve growth cone. J. Cell Sci.116, 1209–1217 (2003). ArticleCASPubMed Google Scholar
Laurino, L. et al. PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. J. Cell Sci.118, 3653–3662 (2005). ArticleCASPubMed Google Scholar
Calderon de Anda, F., Gärtner, A., Tsai, L. H. & Dotti, C. G. Pyramidal neuron polarity axis is defined at the bipolar stage. J. Cell Sci.121, 178–185 (2008). ArticleCASPubMed Google Scholar
Portera-Cailliau, C., Weimer, R. M., De Paola, V., Caroni, P. & Svoboda, K. Diverse modes of axon elaboration in the developing neocortex. PloS Biol.3, e272 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Nogales, E., Wolf, S. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature391, 199–203 (1998). ArticleCASPubMed Google Scholar
Lowe, J., Li, H. & Nogales, E. Refined structure of a β-tubulin at 3.5 Å resolution. J. Mol. Biol.313, 1045–1057 (2001). ArticleCASPubMed Google Scholar
Tuszynski, J. A. et al. The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. Int. J. Dev. Biol.50, 341–358 (2006). ArticleCASPubMed Google Scholar
Erikson, H. P. γ-tubulin nucleation: template or protofilament? Nature Cell Biol.2, E93–E96 (2000). Article Google Scholar
Inclan, Y. F. & Nogales, E. Structural models for the self-assembly and microtubule interactions of γ-, δ- and ɛ-tubulin. J. Cell Sci.114, 413–422 (2001). ArticleCASPubMed Google Scholar
Ludueña, R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol.178, 207–275 (1998). ArticlePubMed Google Scholar
Barra, H. S., Arce, C. & Argaraña, C. E. Posttranslational tyrosination/detyrosination of tubulin. Mol. Neurobiol.2, 133–153 (1988). ArticleCASPubMed Google Scholar
Bulinski, J. C. & Gundersen, G. G. Stabilization of post-translational modifications of microtubules during cellular morphogenesis. Bioessays13, 285–293 (1991). ArticleCASPubMed Google Scholar
Palazzo, A., Ackerman, B. & Gundersen, G. G. Cell biology: tubulin acetylation and cell motility. Nature421, 230 (2003). ArticleCASPubMed Google Scholar
Waterman-Storer, C. & Salmon, E. D. Fluorescent speckle microscopy of microtubules: how long can you go? FASEB J.13, S225–S230 (1999). ArticleCASPubMed Google Scholar