Amyloid-β and tau — a toxic pas de deux in Alzheimer's disease (original) (raw)
Citron, M. Strategies for disease modification in Alzheimer's disease. Nature Rev. Neurosci.5, 677–685 (2004). ArticleCAS Google Scholar
Brunden, K. R., Trojanowski, J. Q. & Lee, V. M. Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nature Rev. Drug Discov.8, 783–793 (2009). ArticleCAS Google Scholar
Querfurth, H. W. & LaFerla, F. M. Alzheimer's disease. N. Engl. J. Med.362, 329–344 (2010). ArticleCAS Google Scholar
Cairns, N. J. et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol.114, 5–22 (2007). Article Google Scholar
Braak, H. & Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging16, 271–278; discussion 278–284 (1995). ArticleCAS Google Scholar
Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science298, 789–791 (2002). ArticleCAS Google Scholar
Bertram, L. & Tanzi, R. E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest.115, 1449–1457 (2005). ArticleCAS Google Scholar
Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Rev. Neurosci.8, 663–672 (2007). ArticleCAS Google Scholar
Götz, J. & Ittner, L. M. Animal models of Alzheimer's disease and frontotemporal dementia. Nature Rev. Neurosci.9, 532–544 (2008). Article Google Scholar
Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nature Rev. Neurosci.11, 155–159 (2010). ArticleCAS Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). ArticleCAS Google Scholar
Sisodia, S. S. & St George-Hyslop, P. H. γ-Secretase, notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nature Rev. Neurosci.3, 281–290 (2002). ArticleCAS Google Scholar
LaFerla, F. M., Green, K. N. & Oddo, S. Intracellular amyloid-β in Alzheimer's disease. Nature Rev. Neurosci.8, 499–509 (2007). ArticleCAS Google Scholar
Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Rev. Mol. Cell Biol.8, 101–112 (2007). ArticleCAS Google Scholar
Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Med.14, 837–842 (2008). ArticleCAS Google Scholar
Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature457, 1128–1132 (2009). ArticleCAS Google Scholar
Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci.8, 1051–1058 (2005). ArticleCAS Google Scholar
Kessels, H. W., Nguyen, L. N., Nabavi, S. & Malinow, R. The prion protein as a receptor for amyloid-β. Nature466, e3–e4 (2010). ArticleCAS Google Scholar
Small, D. H. et al. The β-amyloid protein of Alzheimer's disease binds to membrane lipids but does not bind to the α7 nicotinic acetylcholine receptor. J. Neurochem.101, 1527–1538 (2007). ArticleCAS Google Scholar
Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science316, 750–754 (2007). ArticleCAS Google Scholar
Goedert, M. & Spillantini, M. G. A century of Alzheimer's disease. Science314, 777–781 (2006). ArticleCAS Google Scholar
Hirokawa, N., Funakoshi, T., Sato-Harada, R. & Kanai, Y. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J. Cell Biol.132, 667–679 (1996). ArticleCAS Google Scholar
Aronov, S., Aranda, G., Behar, L. & Ginzburg, I. Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J. Neurosci.21, 6577–6587 (2001). ArticleCAS Google Scholar
Utton, M. A. et al. The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons. J. Neurosci.22, 6394–6400 (2002). ArticleCAS Google Scholar
Konzack, S., Thies, E., Marx, A., Mandelkow, E. M. & Mandelkow, E. Swimming against the tide: mobility of the microtubule-associated protein tau in neurons. J. Neurosci.27, 9916–9927 (2007). ArticleCAS Google Scholar
Ittner, L. M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell142, 387–397 (2010). ArticleCAS Google Scholar
Götz, J., Ittner, L. M. & Kins, S. Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer's disease? J. Neurochem.98, 993–1006 (2006). Article Google Scholar
Maas, T., Eidenmuller, J. & Brandt, R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J. Biol. Chem.275, 15733–15740 (2000). ArticleCAS Google Scholar
Brion, J. P., Smith, C., Couck, A. M., Gallo, J. M. & Anderton, B. H. Developmental changes in tau phosphorylation: fetal tau is transiently phosphorylated in a manner similar to paired helical filament-tau characteristic of Alzheimer's disease. J. Neurochem.61, 2071–2080 (1993). ArticleCAS Google Scholar
Götz, J. et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J.14, 1304–1313 (1995). Article Google Scholar
Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science309, 476–481 (2005). ArticleCAS Google Scholar
Ittner, L. M., Ke, Y. D. & Götz, J. Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J. Biol. Chem.284, 20909–20916 (2009). ArticleCAS Google Scholar
Lee, G., Newman, S. T., Gard, D. L., Band, H. & Panchamoorthy, G. Tau interacts with src-family non-receptor tyrosine kinases. J. Cell Sci.111, 3167–3177 (1998). CASPubMed Google Scholar
Magnani, E. et al. Interaction of tau protein with the dynactin complex. EMBO J.26, 4546–4554 (2007). ArticleCAS Google Scholar
Bhaskar, K., Yen, S. H. & Lee, G. Disease-related modifications in tau affect the interaction between Fyn and Tau. J. Biol. Chem.280, 35119–35125 (2005). ArticleCAS Google Scholar
Salter, M. W. & Kalia, L. V. Src kinases: a hub for NMDA receptor regulation. Nature Rev. Neurosci.5, 317–328 (2004). ArticleCAS Google Scholar
Gu, J. & Zheng, J. Q. Microtubules in dendritic spine development and plasticity. Open Neurosci. J.3, 128–133 (2009). ArticleCAS Google Scholar
Small, D. H., Mok, S. S. & Bornstein, J. C. Alzheimer's disease and Aβ toxicity: from top to bottom. Nature Rev. Neurosci.2, 595–598 (2001). ArticleCAS Google Scholar
Götz, J. et al. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol. Psychiatry9, 664–683 (2004). Article Google Scholar
Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science293, 1487–1491 (2001). ArticleCAS Google Scholar
Terwel, D. et al. Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am. J. Pathol.172, 786–798 (2008). ArticleCAS Google Scholar
Götz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science293, 1491–1495 (2001). Article Google Scholar
Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron43, 321–332 (2004). ArticleCAS Google Scholar
Coomaraswamy, J. et al. Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease. Proc. Natl Acad. Sci. USA107, 7969–7974 (2010). ArticleCAS Google Scholar
Rhein, V. et al. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc. Natl Acad. Sci. USA106, 20057–20062 (2009). ArticleCAS Google Scholar
Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P. & Ferreira, A. Tau is essential to β-amyloid-induced neurotoxicity. Proc. Natl Acad. Sci. USA99, 6364–6369 (2002). ArticleCAS Google Scholar
Vossel, K. A. et al. Tau reduction prevents Aβ-induced defects in axonal transport. Science330, 198 (2010). ArticleCAS Google Scholar
Harada, A. et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature369, 488–491 (1994). ArticleCAS Google Scholar
Dawson, H. N. et al. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci.114, 1179–1187 2001). CASPubMed Google Scholar
Tucker, K. L., Meyer, M. & Barde, Y. A. Neurotrophins are required for nerve growth during development. Nature Neurosci.4, 29–37 (2001). ArticleCAS Google Scholar
Takashima, A. The mechanism for tau aggregation and its relation to neuronal dysfunction. Alzheimer's & Dementia6, S144 (2010) Article Google Scholar
Dawson, H. N. et al. Loss of tau elicits axonal degeneration in a mouse model of Alzheimer's disease. Neuroscience169, 516–531 (2010). ArticleCAS Google Scholar
Saper, C. B., Wainer, B. H. & German, D. C. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer's disease. Neuroscience23, 389–398 (1987). ArticleCAS Google Scholar
Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E. M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol.156, 1051–1063 (2002). ArticleCAS Google Scholar
Pappolla, M. A., Omar, R. A., Kim, K. S. & Robakis, N. K. Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer's disease. Am. J. Pathol.140, 621–628 (1992). CASPubMedPubMed Central Google Scholar
Williamson, R., Usardi, A., Hanger, D. P. & Anderton, B. H. Membrane-bound β-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J.22, 1552–1559 (2008). ArticleCAS Google Scholar
Ittner, L. M. et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc. Natl Acad. Sci. USA105, 15597–16002 (2008). Article Google Scholar
Gong, C. X. & Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem.15, 2321–2328 (2008). ArticleCAS Google Scholar
Noble, W. et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA102, 6990–6995 (2005). ArticleCAS Google Scholar
van Eersel, J. et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proc. Natl Acad. Sci. USA107, 13888–13893 (2010). ArticleCAS Google Scholar
Klein, C. et al. Process. outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J. Neurosci.22, 698–707 (2002). ArticleCAS Google Scholar
Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron39, 409–421 (2003). ArticleCAS Google Scholar
Bolmont, T. et al. Induction of tau pathology by intracerebral infusion of amyloid-β-containing brain extract and by amyloid-β deposition in APP x Tau transgenic mice. Am. J. Pathol.171, 2012–2020 (2007). ArticleCAS Google Scholar
Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron55, 697–711 (2007). ArticleCAS Google Scholar
Grueninger, F. et al. Phosphorylation of Tau at S422 is enhanced by Aβ in TauPS2APP triple transgenic mice. Neurobiol. Dis.37, 294–306 (2010). ArticleCAS Google Scholar