Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science276, 2045–2047 (1997). ArticleCASPubMed Google Scholar
Kahle, P. J., Haass, C., Kretzschmar, H. A. & Neumann, M. Structure/function of α-synuclein in health and disease: rational development of animal models for Parkinson's and related diseases. J. Neurochem.82, 449–457 (2002). ArticleCASPubMed Google Scholar
Baba, M. et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol.152, 879–884 (1998). CASPubMedPubMed Central Google Scholar
Rosen, D. R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature364, 362 (1993). ArticleCASPubMed Google Scholar
Deng, H. X. et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science261, 1047–1051 (1993). ArticleCASPubMed Google Scholar
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell72, 971–983 (1993).
Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatrie Psychisch-Gerichtl. Med.64, 146–148 (1907). Google Scholar
Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun.120, 885–890 (1984). ArticleCASPubMed Google Scholar
Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA82, 4245–4249 (1985). ArticleCASPubMedPubMed Central Google Scholar
Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA83, 4913–4917 (1986). ArticleCASPubMedPubMed Central Google Scholar
Kosik, K. S., Joachim, C. L. & Selkoe, D. J. Microtubule-associated protein τ (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl Acad. Sci. USA83, 4044–4048 (1986). ArticleCASPubMedPubMed Central Google Scholar
Nukina, N. & Ihara, Y. One of the antigenic determinants of paired helical filaments is related to τ protein. J. Biochem.99, 1541–1544 (1986). ArticleCASPubMed Google Scholar
Glenner, G. G. & Wong, C. W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun.122, 1131–1135 (1984). ArticleCASPubMed Google Scholar
Olson, M. I. & Shaw, C. M. Presenile dementia and Alzheimer's disease in mongolism. Brain92, 147–156 (1969). ArticleCASPubMed Google Scholar
Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature325, 733–736 (1987). ArticleCASPubMed Google Scholar
Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science248, 1124–1126 (1990). ArticleCASPubMed Google Scholar
Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature349, 704–706 (1991). ArticleCASPubMed Google Scholar
Chartier-Harlin, M. C. et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature353, 844–846 (1991). ArticleCASPubMed Google Scholar
Mullan, M. et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of β-amyloid. Nature Genet.1, 345–347 (1992). ArticleCASPubMed Google Scholar
Hardy, J. A. & Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science256, 184–185 (1992). References 22 and 23 set out the amyloid cascade hypothesis, for which strong experimental evidence is now accumulating. ArticleCASPubMed Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). ArticleCASPubMed Google Scholar
Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature359, 322–325 (1992). ArticleCASPubMed Google Scholar
Seubert, P. et al. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature359, 325–327 (1992). ArticleCASPubMed Google Scholar
Shoji, M. et al. Production of the Alzheimer amyloid β-protein by normal proteolytic processing. Science258, 126–129 (1992). ArticleCASPubMed Google Scholar
Busciglio, J., Gabuzda, D. H., Matsudaira, P. & Yankner, B. A. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl Acad. Sci. USA90, 2092–2096 (1993). ArticleCASPubMedPubMed Central Google Scholar
Haass, C. Take five-BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation. EMBO J.23, 483–488 (2004). A review on APP processing by β- and γ-secretase. ArticleCASPubMedPubMed Central Google Scholar
Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100, 391–398 (2000). ArticleCASPubMed Google Scholar
Weihofen, A. & Martoglio, B. Intramembrane-cleaving proteases: controlled liberation of functional proteins and peptides from membranes. Trends Cell Biol.13, 71–78 (2003). ArticleCASPubMed Google Scholar
Mumm, J. S. & Kopan, R. Notch signaling: from the outside in. Dev. Biol.228, 151–165 (2000). ArticleCASPubMed Google Scholar
Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature398, 513–517 (1999). ArticleCASPubMed Google Scholar
Steiner, H. et al. Glycine 384 is required for presenilin-1 function and is conserved in polytopic bacterial aspartyl proteases. Nature Cell Biol.2, 848–851 (2000). ArticleCASPubMed Google Scholar
Kimberly, W. T. et al. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl Acad. Sci. USA100, 6382–6387 (2003). ArticleCASPubMedPubMed Central Google Scholar
Takasugi, N. et al. The role of presenilin cofactors in the γ-secretase complex. Nature422, 438–441 (2003). ArticleCASPubMed Google Scholar
Edbauer, D. et al. Reconstitution of γ-secretase activity. Nature Cell Biol.5, 486–488 (2003). ArticleCASPubMed Google Scholar
Sastre, M. et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep.2, 835–841 (2001). ArticleCASPubMedPubMed Central Google Scholar
Weidemann, A. et al. A novel ε-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry41, 2825–2835 (2002). ArticleCASPubMed Google Scholar
Gu, Y. et al. Distinct intramembrane cleavage of the β-amyloid precursor protein family resembling γ-secretase-like cleavage of Notch. J. Biol. Chem.276, 35235–35238 (2001). ArticleCASPubMed Google Scholar
Qi-Takahara, Y. et al. Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by γ-secretase. J. Neurosci.25, 436–445 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhao, G. et al. γ-cleavage is dependent on ζ-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J. Biol. Chem.280, 37689–37697 (2005). ArticleCASPubMed Google Scholar
Dickson, D. W. The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol.56, 321–339 (1997). ArticleCASPubMed Google Scholar
Naslund, J. et al. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA283, 1571–1577 (2000). ArticleCASPubMed Google Scholar
Lue, L. F. et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol.155, 853–862 (1999). ArticleCASPubMedPubMed Central Google Scholar
McLean, C. A. et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol.46, 860–866 (1999). ArticleCASPubMed Google Scholar
Wang, J., Dickson, D. W., Trojanowski, J. Q. & Lee, V. M. The levels of soluble versus insoluble brain Aβ distinguish Alzheimer's disease from normal and pathologic aging. Exp. Neurol.158, 328–337 (1999). ArticleCASPubMed Google Scholar
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature431, 805–810 (2004). Evidence that small, diffusible aggregates of intracellular huntingtin can confer neurotoxicity, perhaps analogously to soluble Aβ oligomers. ArticleCASPubMed Google Scholar
Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell15, 95–105 (2004). ArticleCASPubMed Google Scholar
Cummings, C. J. et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron24, 879–892 (1999). ArticleCASPubMed Google Scholar
Tsai, J., Grutzendler, J., Duff, K. & Gan, W. B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neurosci.7, 1181–1183 (2004). ArticleCASPubMed Google Scholar
Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.26, 267–298 (2003). ArticleCASPubMed Google Scholar
Teplow, D. B. Structural and kinetic features of amyloid β-protein fibrillogenesis. Amyloid5, 121–142 (1998). ArticleCASPubMed Google Scholar
Harper, J. D., Wong, S. S., Lieber, C. M. & Lansbury, P. T. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol.4, 119–125 (1997). ArticleCASPubMed Google Scholar
Hartley, D. M. et al. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci.19, 8876–8884 (1999). ArticleCASPubMedPubMed Central Google Scholar
Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M. & Teplow, D. B. Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem.272, 22364–22372 (1997). ArticleCASPubMed Google Scholar
Walsh, D. M. et al. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem.274, 25945–25952 (1999). ArticleCASPubMed Google Scholar
Bitan, G. et al. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl Acad. Sci. USA100, 330–335 (2003). ArticleCASPubMed Google Scholar
Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature418, 291 (2002). ArticleCASPubMed Google Scholar
Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA95, 6448–6453 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gong, Y. et al. Alzheimer's disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA100, 10417–10422 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440, 352–357 (2006). Identification of a brain-derived Aβ oligomeric assembly, which impairs memory. ArticleCASPubMed Google Scholar
Podlisny, M. B. et al. Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem.270, 9564–9570 (1995). ArticleCASPubMed Google Scholar
Walsh, D. M., Tseng, B. P., Rydel, R. E., Podlisny, M. B. & Selkoe, D. J. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry39, 10831–10839 (2000). ArticleCASPubMed Google Scholar
Funato, H., Enya, M., Yoshimura, M., Morishima-Kawashima, M. & Ihara, Y. Presence of sodium dodecyl sulfate-stable amyloid β-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. Am. J. Pathol.155, 23–28 (1999). ArticleCASPubMedPubMed Central Google Scholar
Enya, M. et al. Appearance of sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimer in the cortex during aging. Am. J. Pathol.154, 271–279 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kawarabayashi, T. et al. Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated τ accumulation in the Tg2576 mouse model of Alzheimer's disease. J. Neurosci.24, 3801–3809 (2004). ArticleCASPubMedPubMed Central Google Scholar
Roher, A. E. et al. Morphology and toxicity of Aβ-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J. Biol. Chem.271, 20631–20635 (1996). ArticleCASPubMed Google Scholar
Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature416, 535–539 (2002). Defines a synaptotoxic function for small, soluble oligomers of secreted Aβin vivo. ArticleCASPubMed Google Scholar
Kamenetz, F. et al. APP processing and synaptic function. Neuron37, 925–937 (2003). Demonstrates the effects of Aβ on synaptic function upon the stimulation of neuronal activity. ArticleCASPubMed Google Scholar
Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M. & Selkoe, D. J. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol.572, 477–492 (2006). ArticleCASPubMedPubMed Central Google Scholar
Klyubin, I. et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nature Med.11, 556–561 (2005). LTP inhibition by soluble oligomers of human Aβ is prevented by active and passive Aβ immunotherapy. ArticleCASPubMed Google Scholar
Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci.8, 79–84 (2005). ArticleCASPubMed Google Scholar
Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron48, 913–922 (2005). Anin vivodemonstration of the effects of synaptic activity on Aβ levels. ArticleCASPubMed Google Scholar
Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci.8, 1051–1058 (2005). A cellular mechanism that describes how Aβ lowers NMDA-evoked currents. ArticleCASPubMed Google Scholar
Gong, B. et al. Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell126, 775–788 (2006). ArticleCASPubMed Google Scholar
Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science313, 1781–1784 (2006). ArticleCASPubMed Google Scholar
Glabe, C. G. & Kayed, R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology66, S74–S78 (2006). ArticleCASPubMed Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300, 486–489 (2003). Describes common conformational epitopes on oligomers of completely distinct amyloidogenic proteins. ArticleCASPubMed Google Scholar
Lashuel, H. A. et al. α-Synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol.322, 1089–1102 (2002). ArticleCASPubMed Google Scholar
Conway, K. A., Harper, J. D. & Lansbury, P. T. Jr. Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry39, 2552–2563 (2000). ArticleCASPubMed Google Scholar
Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nature Med.4, 1318–1320 (1998). ArticleCASPubMed Google Scholar
Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA97, 571–576 (2000). ArticleCASPubMedPubMed Central Google Scholar
Marchut, A. J. & Hall, C. K. Spontaneous formation of annular structures observed in molecular dynamics simulations of polyglutamine peptides. Comput. Biol. Chem.30, 215–218 (2006). ArticleCASPubMed Google Scholar
Srinivasan, R., Marchant, R. E. & Zagorski, M. G. ABri peptide associated with familial British dementia forms annular and ring-like protofibrillar structures. Amyloid11, 10–13 (2004). ArticleCASPubMed Google Scholar
Wille, H., Drewes, G., Biernat, J., Mandelkow, E. M. & Mandelkow, E. Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein τ in vitro. J. Cell. Biol.118, 573–584 (1992). ArticleCASPubMed Google Scholar
Friedhoff, P., von Bergen, M., Mandelkow, E. M., Davies, P. & Mandelkow, E. A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc. Natl Acad. Sci. USA95, 15712–15717 (1998). ArticleCASPubMedPubMed Central Google Scholar
Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science314, 130–133 (2006). ArticleCASPubMed Google Scholar
Willem, M. et al. Control of peripheral nerve myelination by the β-secretase BACE1. Science314, 664–666 (2006). ArticleCASPubMed Google Scholar
Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400, 173–177 (1999). Initial report of the beneficial effects of Aβ immunotherapy in a transgenic mouse model of AD. ArticleCASPubMed Google Scholar
Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med.6, 916–919 (2000). ArticleCASPubMed Google Scholar
Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology61, 46–54 (2003). ArticleCASPubMed Google Scholar
Hock, C. et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron38, 547–554 (2003). First report of the beneficial effects of Aβ immunotherapy in a small cohort of vaccinated patients with AD. ArticleCASPubMed Google Scholar
Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology64, 1553–1562 (2005). ArticleCASPubMed Google Scholar
Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nature Med.9, 448–452 (2003). First report of the apparent removal of Aβ deposits in humans by a therapeutic agent. ArticleCASPubMed Google Scholar
Patton, R. L. et al. Amyloid-β peptide remnants in AN-1792-immunized Alzheimer's disease patients: a biochemical analysis. Am. J. Pathol.169, 1048–1063 (2006). ArticleCASPubMedPubMed Central Google Scholar
Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated τ aggregates via the proteasome. Neuron43, 321–332 (2004). Further evidence of a linear connection between Aβ deposition and tau hyperphosphorylation in an animal model. ArticleCASPubMed Google Scholar
DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M. & Holtzman, D. M. Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science295, 2264–2267 (2002). ArticleCASPubMed Google Scholar
Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nature Neurosci.5, 452–457 (2002). ArticleCASPubMed Google Scholar
Janus, C. et al. A β peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature408, 979–982 (2000). ArticleCASPubMed Google Scholar
Gelinas, D. S., DaSilva, K., Fenili, D., St George-Hyslop, P. & McLaurin, J. Immunotherapy for Alzheimer's disease. Proc. Natl Acad. Sci. USA101, 14657–14662 (2004). ArticleCASPubMedPubMed Central Google Scholar
Selkoe, D. J. & Schenk, D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol.43, 545–584 (2003). ArticleCASPubMed Google Scholar
McLaurin, J. et al. Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nature Med.8, 1263–1269 (2002). Important mechanistic insights about how Aβ immunotherapy can prevent oligomerization and cytotoxicity. ArticleCASPubMed Google Scholar
Solomon, B., Koppel, R., Hanan, E. & Katzav, T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl Acad. Sci. USA93, 452–455 (1996). ArticleCASPubMedPubMed Central Google Scholar
Qiu, W. Q. et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β- protein by degradation. J. Biol. Chem.273, 32730–32738 (1998). ArticleCASPubMed Google Scholar
Mueller-Steiner, S. et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron51, 703–714 (2006). ArticleCASPubMed Google Scholar
Iwata, N. et al. Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nature Med.6, 143–150 (2000). ArticleCASPubMed Google Scholar
Leissring, M. A. et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron40, 1087–1093 (2003). ArticleCASPubMed Google Scholar
Huang, S. M. et al. Neprilysin-sensitive synapse-associated Aβ oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem.281, 17941–17951 (2006). ArticleCASPubMed Google Scholar
McLaurin, J., Franklin, T., Zhang, X., Deng, J. & Fraser, P. E. Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur. J. Biochem.266, 1101–1110 (1999). ArticleCASPubMed Google Scholar
McLaurin, J., Golomb, R., Jurewicz, A., Antel, J. P. & Fraser, P. E. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit aβ-induced toxicity. J. Biol. Chem.275, 18495–18502 (2000). ArticleCASPubMed Google Scholar
McLaurin, J. et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nature Med.12, 801–808 (2006). New Aβ-aggregation inhibitors show beneficial effects on plaque burden and behaviour in mice. ArticleCASPubMed Google Scholar
Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature414, 212–216 (2001). Discovery of certain NSAIDs as γ-secretase modulators: they lead to shorter, less amyloidogenic Aβ species. ArticleCASPubMed Google Scholar
Doerfler, P., Shearman, M. S. & Perlmutter, R. M. Presenilin-dependent γ-secretase activity modulates thymocyte development. Proc. Natl Acad. Sci. USA98, 9312–9317 (2001). ArticleCASPubMedPubMed Central Google Scholar
Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep.3, 688–694 (2002). ArticleCASPubMedPubMed Central Google Scholar
Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med.2, 864–870 (1996). ArticleCASPubMed Google Scholar
Suzuki, N. et al. An increased percentage of long amyloid β-protein secreted by familial amyloid β-protein precursor (βAPP717) mutants. Science264, 1336–1340 (1994). ArticleCASPubMed Google Scholar
Burdick, D. et al. Assembly and aggregation properties of synthetic Alzheimer's A4/β amyloid peptide analogs. J. Biol. Chem.267, 546–554 (1992). CASPubMed Google Scholar
Jarrett, J. T., Berger, E. P. & Lansbury, P. T. Jr. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry32, 4693–4697 (1993). ArticleCASPubMed Google Scholar
Chen, Y. R. & Glabe, C. G. Distinct early folding and aggregation properties of Alzheimer amyloid-β peptides Aβ40 and Aβ42: stable trimer or tetramer formation by Aβ42. J. Biol. Chem.281, 24414–24422 (2006). ArticleCASPubMed Google Scholar
Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nature Neurosci.4, 887–893 (2001). A genetic explanation for the development of rare forms of AD that is strongly supportive of the amyloid hypothesis. ArticleCASPubMed Google Scholar
Iwatsubo, T. et al. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific A β monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron13, 45–53 (1994). ArticleCASPubMed Google Scholar
Cai, X. D., Golde, T. E. & Younkin, S. G. Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science259, 514–516 (1993). ArticleCASPubMed Google Scholar
Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature360, 672–674 (1992). ArticleCASPubMed Google Scholar
Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet.38, 24–26 (2006). ArticleCASPubMed Google Scholar
Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science302, 841 (2003). ArticleCASPubMed Google Scholar
Bentahir, M. et al. Presenilin clinical mutations can affect γ-secretase activity by different mechanisms. J. Neurochem.96, 732–742 (2006). ArticleCASPubMed Google Scholar
Deng, Y. et al. Deletion of presenilin 1 hydrophilic loop sequence leads to impaired γ-secretase activity and exacerbated amyloid pathology. J. Neurosci.26, 3845–3854 (2006). ArticleCASPubMedPubMed Central Google Scholar