Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation (original) (raw)

References

  1. Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001).
    Article CAS PubMed Google Scholar
  2. Kettenberger, H., Armache, K.-J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).
    Article CAS PubMed Google Scholar
  3. Westover, K.D., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481–489 (2004).
    Article CAS PubMed Google Scholar
  4. Wang, D., Bushnell, D.A., Westover, K.D., Kaplan, C.D. & Kornberg, R.D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941–954 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  5. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: RNA polymerase II at 2.8 Å resolution. Science 292, 1863–1876 (2001).
    Article CAS PubMed Google Scholar
  6. Vassylyev, D.G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417, 712–719 (2002).
    Article CAS PubMed Google Scholar
  7. Bar-Nahum, G. et al. A ratchet mechanism of transcription elongation and its control. Cell 120, 183–193 (2005).
    Article CAS PubMed Google Scholar
  8. Epshtein, V. et al. Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol. Cell 10, 623–634 (2002).
    Article CAS PubMed Google Scholar
  9. Tuske, S. et al. Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell 122, 541–552 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  10. Artsimovitch, I. et al. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122, 351–363 (2005).
    Article CAS PubMed Google Scholar
  11. Bushnell, D.A., Cramer, P. & Kornberg, R.D. Structural basis of transcription: α-amanitin-RNA polymerase II cocrystal at 2.8 Å resolution. Proc. Natl. Acad. Sci. USA 99, 1218–1222 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  12. Gong, X.Q., Nedialkov, Y.A. & Burton, Z.F. α-amanitin blocks translocation by human RNA polymerase II. J. Biol. Chem. 279, 27422–27427 (2004).
    Article CAS PubMed Google Scholar
  13. Vassylyev, D.G. et al. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448, 163–168 (2007).
    Article CAS PubMed Google Scholar
  14. Cramer, P. Gene transcription: extending the message. Nature 448, 142–143 (2007).
    Article CAS PubMed Google Scholar
  15. Landick, R. Active-site dynamics in RNA polymerases. Cell 116, 351–353 (2004).
    Article CAS PubMed Google Scholar
  16. Kashkina, E. et al. Multisubunit RNA polymerases melt only a single DNA base pair downstream of the active site. J. Biol. Chem. 282, 21578–21582 (2007).
    Article CAS PubMed Google Scholar
  17. Vassylyev, D.G., Vassylyeva, M.N., Perederina, A., Tahirov, T.H. & Artsimovitch, I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448, 157–162 (2007).
    Article CAS PubMed Google Scholar
  18. Naji, S., Bertero, M.G., Spitalny, P., Cramer, P. & Thomm, M. Structure function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement. Nucleic Acids Res. 36, 676–687 (2007).
    Article PubMed PubMed Central Google Scholar
  19. Campbell, E.A. et al. Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J. 24, 674–682 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  20. Toulokhonov, I., Zhang, J., Palangat, M. & Landick, R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 27, 406–419 (2007).
    Article CAS PubMed Google Scholar
  21. Sousa, R. Machinations of a Maxwellian demon. Cell 120, 155–156 (2005).
    Article CAS PubMed Google Scholar
  22. Damsma, G.E., Alt, A., Brueckner, F., Carell, T. & Cramer, P. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat. Struct. Mol. Biol. 14, 1127–1133 (2007).
    Article CAS PubMed Google Scholar
  23. Temiakov, D. et al. Structural basis for substrate selection by T7 RNA polymerase. Cell 116, 381–391 (2004).
    Article CAS PubMed Google Scholar
  24. Yin, Y.W. & Steitz, T.A. The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116, 393–404 (2004).
    Article CAS PubMed Google Scholar
  25. Cramer, P. Common structural features of nucleic acid polymerases. Bioessays 24, 724–729 (2002).
    Article CAS PubMed Google Scholar
  26. Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R. & Block, S.M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  27. Galburt, E.A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446, 820–823 (2007).
    Article CAS PubMed Google Scholar
  28. Chafin, D.R., Guo, H. & Price, D.H. Actions of α-amanitin during pyrophosphoryolysis and elongation by RNA polymerase II. J. Biol. Chem. 270, 19114–19119 (1995).
    Article CAS PubMed Google Scholar
  29. Rudd, M.D. & Luse, D.S. Amanitin greatly reduces the rate of transcription by RNA polymerase II ternary complexes but fails to inhibit some transcript cleavage modes. J. Biol. Chem. 271, 21549–21558 (1996).
    Article CAS PubMed Google Scholar
  30. Wienland, T. & Faulstich, H. Fifty years of amanitin. Experientia 47, 1186–1193 (1991).
    Article Google Scholar
  31. Zanotti, G., Petersen, G. & Wieland, T. Structure-toxicity relationships in the amatoxin series. Int. J. Pept. Protein Res. 40, 551–558 (1992).
    Article CAS PubMed Google Scholar
  32. Armache, K.-J., Kettenberger, H. & Cramer, P. Architecture of the initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6964–6968 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  33. Brueckner, F., Hennecke, U., Carell, T. & Cramer, P. CPD damage recognition by transcribing RNA polymerase II. Science 315, 859–862 (2007).
    Article CAS PubMed Google Scholar
  34. Broennimann, E.F. et al. The PILATUS 1M detector. J. Synchrotron Radiat. 13, 120–130 (2006).
    Article CAS PubMed Google Scholar
  35. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).
    Article CAS Google Scholar
  36. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).
    Article PubMed Google Scholar
  37. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protocols 2, 2728–2733 (2007).
    Article CAS PubMed Google Scholar
  38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Article PubMed Google Scholar
  39. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article PubMed Google Scholar
  40. Gerber, P.R. & Muller, K. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J. Comput. Aided Mol. Des. 9, 251–268 (1995).
    Article CAS PubMed Google Scholar
  41. Armache, K.-J., Mitterweger, S., Meinhart, A. & Cramer, P. Structures of complete RNA polymerase II and its subcomplex Rpb4/7. J. Biol. Chem. 280, 7131–7134 (2005).
    Article CAS PubMed Google Scholar
  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
    Article CAS Google Scholar

Download references