Allosteric regulation of Argonaute proteins by miRNAs (original) (raw)

References

  1. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).
    Article CAS Google Scholar
  2. Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).
    Article CAS Google Scholar
  3. Wu, L. & Belasco, J.G. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol. Cell 29, 1–7 (2008).
    Article Google Scholar
  4. Kiriakidou, M. et al. An mRNA m7G cap binding–like motif within human AGO2 represses translation. Cell 129, 1141–1151 (2007).
    Article CAS Google Scholar
  5. Pillai, R.S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–1576 (2005).
    Article CAS Google Scholar
  6. Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–16966 (2005).
    Article CAS Google Scholar
  7. Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857–1862 (2007).
    Article CAS Google Scholar
  8. Zdanowicz, A. et al. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol. Cell 35, 881–888 (2009).
    Article CAS Google Scholar
  9. Wang, B., Love, T.M., Call, M.E., Doench, J.G. & Novina, C.D. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol. Cell 22, 553–560 (2006).
    Article CAS Google Scholar
  10. Wang, B., Yanez, A. & Novina, C.D. MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc. Natl. Acad. Sci. USA 105, 5343–5348 (2008).
    Article CAS Google Scholar
  11. Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1: DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005).
    Article CAS Google Scholar
  12. Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15, 1067–1077 (2009).
    Article CAS Google Scholar
  13. Chekulaeva, M., Filipowicz, W. & Parker, R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15, 794–803 (2009).
    Article CAS Google Scholar
  14. Soding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).
    Article Google Scholar
  15. Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).
    Article CAS Google Scholar
  16. Marcotrigiano, J., Gingras, A.C., Sonenberg, N. & Burley, S.K. Cocrystal structure of the messenger RNA 5′ cap–binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89, 951–961 (1997).
    Article CAS Google Scholar
  17. Holm, L. & Sander, C. Protein-structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).
    Article CAS Google Scholar
  18. Anantharaman, V. & Aravind, L. Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, elF2B, DeoR transcription factors Acyl-CoA transferases and methenyltetrahydrofolate synthetase. J. Mol. Biol. 356, 823–842 (2006).
    Article CAS Google Scholar
  19. Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004).
    Article CAS Google Scholar
  20. Carmell, M.A., Xuan, Z., Zhang, M.Q. & Hannon, G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).
    Article CAS Google Scholar
  21. Parker, J.S. & Barford, D. Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem. Sci. 31, 622–630 (2006).
    Article CAS Google Scholar
  22. Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).
    Article CAS Google Scholar
  23. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).
    Article CAS Google Scholar
  24. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).
    Article CAS Google Scholar
  25. Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903 (2007).
    Article CAS Google Scholar
  26. Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell 19, 437–447 (2005).
    Article CAS Google Scholar
  27. Schumacher, M.A., Choi, K.Y., Zalkin, H. & Brennan, R.G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by α helices. Science 266, 763–770 (1994).
    Article CAS Google Scholar
  28. Ma, J.B. et al. Structural basis for 5′-end–specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005).
    Article CAS Google Scholar
  29. Parker, J.S., Roe, S.M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature 434, 663–666 (2005).
    Article CAS Google Scholar
  30. Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15, 346–353 (2008).
    Article CAS Google Scholar
  31. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).
    Article CAS Google Scholar
  32. Pillai, R.S., Artus, C.G. & Filipowicz, W. Tethering of human AGO proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. Rna 10, 1518–1525 (2004).
    Article CAS Google Scholar
  33. Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol. 26, 2965–2975 (2006).
    Article CAS Google Scholar
  34. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Distinct roles for argonaute proteins in small RNA–directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).
    Article CAS Google Scholar
  35. Kinch, L.N. & Grishin, N.V. The human AGO2 MC region does not contain an eIF4E-like mRNA cap binding motif. Biol. Direct 4, 2 (2009).
    Article Google Scholar
  36. Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767 (2007).
    Article CAS Google Scholar
  37. Miyoshi, K., Okada, T.N., Siomi, H. & Siomi, M.C. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 15, 1282–1291 (2009).
    Article CAS Google Scholar
  38. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M.C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).
    Article CAS Google Scholar
  39. Tomari, Y., Du, T. & Zamore, P.D. Sorting of Drosophila small silencing RNAs. Cell 130, 299–308 (2007).
    Article CAS Google Scholar
  40. Vasudevan, S., Tong, Y. & Steitz, J.A. Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 7, 1545–1549 (2008).
    Article CAS Google Scholar
  41. Tu, B.P. et al. Cyclic changes in metabolic state during the life of a yeast cell. Proc. Natl. Acad. Sci. USA 104, 16886–16891 (2007).
    Article CAS Google Scholar
  42. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261–1266 (2005).
    Article Google Scholar
  43. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723 (2005).
    Article CAS Google Scholar
  44. Pauley, K.M. et al. Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep. 7, 904–910 (2006).
    Article CAS Google Scholar
  45. Turnbough, C.L., Jr. & Switzer, R.L. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol. Mol. Biol. Rev. 72, 266–300 (2008).
    Article CAS Google Scholar
  46. Wang, Y.L. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).
    Article CAS Google Scholar
  47. Wang, Y.L., Sheng, G., Juranek, S., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).
    Article CAS Google Scholar
  48. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in AGO silencing complexes. Nature 461, 754–761 (2009).
    Article CAS Google Scholar
  49. Guang, S. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 321, 537–541 (2008).
    Article CAS Google Scholar
  50. Ginalski, K., Elofsson, A., Fischer, D. & Rychlewski, L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19, 1015–1018 (2003).
    Article CAS Google Scholar
  51. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Article CAS Google Scholar
  52. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).
    Article CAS Google Scholar
  53. Miyoshi, K., Uejima, H., Nagami-Okada, T., Siomi, H. & Siomi, M.C. In vitro RNA cleavage assay for Argonaute-family proteins. Methods Mol. Biol. 442, 29–43 (2008).
    Article CAS Google Scholar
  54. Nahvi, A., Shoemaker, C.J. & Green, R. An expanded seed sequence definition accounts for full regulation of the hid 3′ UTR by bantam miRNA. RNA 15, 814–822 (2009).
    Article CAS Google Scholar
  55. Cong, P.J. & Shuman, S. Mutational analysis of messenger RNA capping enzyme identifies amino acids involved in GTP binding, enzyme-guanylate formation, and GMP transfer to RNA. Mol. Cell. Biol. 15, 6222–6231 (1995).
    Article CAS Google Scholar
  56. Stockley, P.G. Filter-binding assays. Methods Mol. Biol. 543, 1–14 (2009).
    Article CAS Google Scholar
  57. O'Hara, B.P. et al. Crystal structure and induction mechanism of AmiC–AmiR: a ligand-regulated transcription antitermination complex. EMBO J. 18, 5175–5186 (1999).
    Article CAS Google Scholar

Download references