Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity (original) (raw)

References

  1. Sorek, R., Lawrence, C.M. & Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82, 237–266 (2013).
    Article CAS PubMed Google Scholar
  2. Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).
    Article CAS PubMed Google Scholar
  3. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).
    Article CAS PubMed Google Scholar
  4. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).
    CAS PubMed Google Scholar
  5. Yosef, I., Goren, M.G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  6. Swarts, D.C., Mosterd, C., van Passel, M.W. & Brouns, S.J. CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7, e35888 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  7. Datsenko, K.A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3, 945 (2012).
    Article PubMed Google Scholar
  8. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).
    CAS PubMed PubMed Central Google Scholar
  9. Carte, J., Wang, R., Li, H., Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  10. Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J.A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  11. Deltcheva, E. et al. CRISPR RNA maturation by _trans_-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  12. Sashital, D.G., Jinek, M. & Doudna, J.A. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Mol. Biol. 18, 680–687 (2011).
    Article CAS PubMed Google Scholar
  13. Wiedenheft, B. et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477, 486–489 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  14. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  15. Garneau, J.E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).
    Article CAS PubMed Google Scholar
  16. Jore, M.M. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18, 529–536 (2011).
    Article CAS PubMed Google Scholar
  17. Makarova, K.S. et al. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).
    Article CAS PubMed Google Scholar
  18. Savitskaya, E., Semenova, E., Dedkov, V., Metlitskaya, A. & Severinov, K. High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli. RNA Biol. 10, 716–725 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  19. Diez-Villaseñor, C., Guzman, N.M., Almendros, C., Garcia-Martinez, J. & Mojica, F.J. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol. 10, 792–802 (2013).
    Article PubMed PubMed Central Google Scholar
  20. Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).
    Article CAS PubMed Google Scholar
  21. Sashital, D.G., Wiedenheft, B. & Doudna, J.A. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46, 606–615 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  22. Beloglazova, N. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283, 20361–20371 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  23. Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912 (2009).
    Article CAS PubMed Google Scholar
  24. Babu, M. et al. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol. 79, 484–502 (2011).
    Article CAS PubMed Google Scholar
  25. Nam, K.H. et al. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein. J. Biol. Chem. 287, 35943–35952 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  26. Kim, T.Y., Shin, M., Huynh Thi Yen, L. & Kim, J.S. Crystal structure of Cas1 from Archaeoglobus fulgidus and characterization of its nucleolytic activity. Biochem. Biophys. Res. Commun. 441, 720–725 (2013).
    Article CAS PubMed Google Scholar
  27. Diez-Villaseñor, C., Almendros, C., Garcia-Martinez, J. & Mojica, F.J. Diversity of CRISPR loci in Escherichia coli. Microbiology 156, 1351–1361 (2010).
    Article PubMed Google Scholar
  28. Goren, M.G., Yosef, I., Auster, O. & Qimron, U. Experimental definition of a clustered regularly interspaced short palindromic duplicon in Escherichia coli. J. Mol. Biol. 423, 14–16 (2012).
    Article CAS PubMed Google Scholar
  29. Samai, P., Smith, P. & Shuman, S. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 1552–1556 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  30. Han, D., Lehmann, K. & Krauss, G. SSO1450–a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA. FEBS Lett. 583, 1928–1932 (2009).
    Article CAS PubMed Google Scholar
  31. Makarova, K.S., Anantharaman, V., Aravind, L. & Koonin, E.V. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct 7, 40 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  32. Plagens, A., Tjaden, B., Hagemann, A., Randau, L. & Hensel, R. Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J. Bacteriol. 194, 2491–2500 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  33. Richter, C., Gristwood, T., Clulow, J.S. & Fineran, P.C. In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas System. PLoS ONE 7, e49549 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  34. Kranzusch, P.J., Lee, A.S., Berger, J.M. & Doudna, J.A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Reports 3, 1362–1368 (2013).
    Article CAS PubMed Google Scholar
  35. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).
    Article CAS PubMed Google Scholar
  36. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  37. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).
    Article PubMed Google Scholar
  38. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Article PubMed Google Scholar
  40. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Analytical Ultracentrifugation in Biochemistry and Polymer Science 90–125 (Royal Society of Chemistry, 1992).
  41. Brown, P.H. & Schuck, P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 90, 4651–4661 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  42. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  43. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS PubMed Google Scholar
  44. Pei, J., Kim, B.H. & Grishin, N.V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  45. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
    Article CAS PubMed PubMed Central Google Scholar

Download references