Oudet, P., Gross-Bellard, M. & Chambon, P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell4, 281–300 (1975). CASPubMed Google Scholar
Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389, 251–260 (1997). ArticleCASPubMed Google Scholar
Woodland, H.R. & Adamson, E.D. The synthesis and storage of histones during the oogenesis of Xenopus laevis. Dev. Biol.57, 118–135 (1977). CASPubMed Google Scholar
Loyola, A. & Almouzni, G. Histone chaperones, a supporting role in the limelight. Biochim. Biophys. Acta1677, 3–11 (2004). CASPubMed Google Scholar
Laskey, R.A., Mills, A.D. & Morris, N.R. Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell10, 237–243 (1977). CASPubMed Google Scholar
Stillman, B. Chromatin assembly during SV40 DNA replication in vitro. Cell45, 555–565 (1986). CASPubMed Google Scholar
Smith, S. & Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell58, 15–25 (1989). CASPubMed Google Scholar
Ray-Gallet, D. & Almouzni, G. DNA synthesis-dependent and -independent chromatin assembly pathways in Xenopus egg extracts. Methods Enzymol.375, 117–131 (2004). CASPubMed Google Scholar
Quivy, J.P., Grandi, P. & Almouzni, G. Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J.20, 2015–2027 (2001). CASPubMedPubMed Central Google Scholar
Ray-Gallet, D. et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol. Cell9, 1091–1100 (2002). CASPubMed Google Scholar
Mello, J.A. et al. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep.3, 329–334 (2002). CASPubMedPubMed Central Google Scholar
Ray-Gallet, D., Quivy, J.P., Sillje, H.W., Nigg, E.A. & Almouzni, G. The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts. Chromosoma116, 487–496 (2007). CASPubMed Google Scholar
Polo, S.E. & Almouzni, G. Chromatin assembly: a basic recipe with various flavours. Curr. Opin. Genet. Dev.16, 104–111 (2006). CASPubMed Google Scholar
Harata, M. et al. The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histones. Mol. Biol. Cell10, 2595–2605 (1999). CASPubMedPubMed Central Google Scholar
Luk, E. et al. Chz1, a nuclear chaperone for histone H2AZ. Mol. Cell25, 357–368 (2007). CASPubMed Google Scholar
Loyola, A. & Almouzni, G. Marking histone H3 variants: how, when and why? Trends Biochem. Sci.32, 425–433 (2007). CASPubMed Google Scholar
Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell116, 51–61 (2004). CASPubMed Google Scholar
Richardson, R.T. et al. Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J. Biol. Chem.275, 30378–30386 (2000). CASPubMed Google Scholar
Shintomi, K. et al. Nucleosome assembly protein-1 is a linker histone chaperone in Xenopus eggs. Proc. Natl. Acad. Sci. USA102, 8210–8215 (2005). CASPubMedPubMed Central Google Scholar
Dutta, S. et al. The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol. Cell8, 841–853 (2001). CASPubMed Google Scholar
Mousson, F., Ochsenbein, F. & Mann, C. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma116, 79–93 (2007). CASPubMed Google Scholar
Park, Y.J. & Luger, K. The structure of nucleosome assembly protein 1. Proc. Natl. Acad. Sci. USA103, 1248–1253 (2006). CASPubMedPubMed Central Google Scholar
Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science301, 1090–1093 (2003). CASPubMed Google Scholar
Angelov, D. et al. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J.25, 1669–1679 (2006). CASPubMedPubMed Central Google Scholar
Daganzo, S.M. et al. Structure and function of the conserved core of histone deposition protein Asf1. Curr. Biol.13, 2148–2158 (2003). CASPubMed Google Scholar
Muto, S. et al. Relationship between the structure of SET/TAF-Iβ/INHAT and its histone chaperone activity. Proc. Natl. Acad. Sci. USA104, 4285–4290 (2007). CASPubMedPubMed Central Google Scholar
Umehara, T., Chimura, T., Ichikawa, N. & Horikoshi, M. Polyanionic stretch-deleted histone chaperone cia1/Asf1p is functional both in vivo and in vitro. Genes Cells7, 59–73 (2002). CASPubMed Google Scholar
Regnard, C. et al. Polyglutamylation of nucleosome assembly proteins. J. Biol. Chem.275, 15969–15976 (2000). CASPubMed Google Scholar
Namboodiri, V.M., Dutta, S., Akey, I.V., Head, J.F. & Akey, C.W. The crystal structure of Drosophila NLP-core provides insight into pentamer formation and histone binding. Structure11, 175–186 (2003). CASPubMed Google Scholar
Mousson, F. et al. Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc. Natl. Acad. Sci. USA102, 5975–5980 (2005). CASPubMedPubMed Central Google Scholar
DeSilva, H., Lee, K. & Osley, M.A. Functional dissection of yeast Hir1p, a WD repeat-containing transcriptional corepressor. Genetics148, 657–667 (1998). CASPubMedPubMed Central Google Scholar
Kaufman, P.D., Kobayashi, R., Kessler, N. & Stillman, B. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell81, 1105–1114 (1995). CASPubMed Google Scholar
Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell87, 95–104 (1996). CASPubMed Google Scholar
Agez, M. et al. Structure of the histone chaperone ASF1 bound to the histone H3 C-terminal helix and functional insights. Structure15, 191–199 (2007). CASPubMed Google Scholar
Antczak, A.J., Tsubota, T., Kaufman, P.D. & Berger, J.M. Structure of the yeast histone H3–ASF1 interaction: implications for chaperone mechanism, species-specific interactions, and epigenetics. BMC Struct. Biol.6, 26 (2006). PubMedPubMed Central Google Scholar
English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. Structural basis for the histone chaperone activity of Asf1. Cell127, 495–508 (2006). CASPubMedPubMed Central Google Scholar
Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature446, 338–341 (2007). CASPubMed Google Scholar
English, C.M., Maluf, N.K., Tripet, B., Churchill, M.E. & Tyler, J.K. ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3–H4 heterotetramer on DNA. Biochemistry44, 13673–13682 (2005). CASPubMed Google Scholar
Schwabish, M.A. & Struhl, K. Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol. Cell22, 415–422 (2006). CASPubMed Google Scholar
Adkins, M.W., Howar, S.R. & Tyler, J.K. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell14, 657–666 (2004). CASPubMed Google Scholar
Tamburini, B.A., Carson, J.J., Adkins, M.W. & Tyler, J.K. Functional conservation and specialization among eukaryotic anti-silencing function 1 histone chaperones. Eukaryot. Cell4, 1583–1590 (2005). CASPubMedPubMed Central Google Scholar
Tang, Y. et al. Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat. Struct. Mol. Biol.13, 921–929 (2006). CASPubMedPubMed Central Google Scholar
Sillje, H.H. & Nigg, E.A. Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr. Biol.11, 1068–1073 (2001). CASPubMed Google Scholar
Driscoll, R., Hudson, A. & Jackson, S.P. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science315, 649–652 (2007). CASPubMedPubMed Central Google Scholar
Han, J. et al. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science315, 653–655 (2007). CASPubMed Google Scholar
Tsubota, T. et al. Histone H3–K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol. Cell25, 703–712 (2007). CASPubMedPubMed Central Google Scholar
Adkins, M.W., Carson, J.J., English, C.M., Ramey, C.J. & Tyler, J.K. The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase. J. Biol. Chem.282, 1334–1340 (2007). CASPubMed Google Scholar
Recht, J. et al. Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc. Natl. Acad. Sci. USA103, 6988–6993 (2006). CASPubMedPubMed Central Google Scholar
Schneider, J., Bajwa, P., Johnson, F.C., Bhaumik, S.R. & Shilatifard, A. Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J. Biol. Chem.281, 37270–37274 (2006). CASPubMed Google Scholar
Xhemalce, B. et al. Regulation of histone H3 lysine 56 acetylation in Schizosaccharomyces pombe. J. Biol. Chem.282, 15040–15047 (2007). CASPubMed Google Scholar
Morris, S.A. et al. Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J. Biol. Chem.282, 7632–7640 (2007). CASPubMed Google Scholar
Lorain, S. et al. Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol. Cell. Biol.18, 5546–5556 (1998). CASPubMedPubMed Central Google Scholar
Sharp, J.A., Fouts, E.T., Krawitz, D.C. & Kaufman, P.D. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr. Biol.11, 463–473 (2001). CASPubMed Google Scholar
Zhang, R. et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell8, 19–30 (2005). CASPubMed Google Scholar
Tyler, J.K. et al. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol. Cell. Biol.21, 6574–6584 (2001). CASPubMedPubMed Central Google Scholar
Sanematsu, F. et al. Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells. J. Biol. Chem.281, 13817–13827 (2006). CASPubMed Google Scholar
Emili, A., Schieltz, D.M., Yates, J.R., III & Hartwell, L.H. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol. Cell7, 13–20 (2001). CASPubMed Google Scholar
Hu, F., Alcasabas, A.A. & Elledge, S.J. Asf1 links Rad53 to control of chromatin assembly. Genes Dev.15, 1061–1066 (2001). CASPubMedPubMed Central Google Scholar
Gunjan, A. & Verreault, A.A. Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell115, 537–549 (2003). CASPubMed Google Scholar
Groth, A. et al. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol. Cell17, 301–311 (2005). CASPubMed Google Scholar
Polo, S.E. & Almouzni, G. Histone metabolic pathways and chromatin assembly factors as proliferation markers. Cancer Lett.220, 1–9 (2005). CASPubMed Google Scholar
Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell128, 721–733 (2007). CASPubMed Google Scholar
Kulaeva, O.I., Gaykalova, D.A. & Studitsky, V.M. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat. Res.618, 116–129 (2007). CASPubMedPubMed Central Google Scholar
Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. Cell128, 707–719 (2007). CASPubMed Google Scholar
Workman, J.L. Nucleosome displacement in transcription. Genes Dev.20, 2009–2017 (2006). CASPubMed Google Scholar
Krogan, N.J. et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol. Cell. Biol.22, 6979–6992 (2002). CASPubMedPubMed Central Google Scholar
Bhaumik, S.R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol.14, 1008–1016 (2007). CASPubMed Google Scholar
Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature436, 294–298 (2005). CASPubMed Google Scholar
Xu, F., Zhang, K. & Grunstein, M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell121, 375–385 (2005). CASPubMed Google Scholar
Han, J., Zhou, H., Li, Z., Xu, R.M. & Zhang, Z. The Rtt109-Vps75 histone acetyltransferase complex acetylates non-nucleosomal histone H3. J. Biol. Chem.282, 14158–14164 (2007). CASPubMed Google Scholar
Duina, A.A. et al. Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae. Genetics177, 101–112 (2007). CASPubMedPubMed Central Google Scholar
Adkins, M.W. & Tyler, J.K. Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. Mol. Cell21, 405–416 (2006). CASPubMed Google Scholar
Kaplan, C.D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science301, 1096–1099 (2003). CASPubMed Google Scholar
Cairns, B.R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol.14, 989–996 (2007). CASPubMedPubMed Central Google Scholar
Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol.7, 437–447 (2006). CASPubMed Google Scholar
Raisner, R.M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell123, 233–248 (2005). CASPubMedPubMed Central Google Scholar
Thiriet, C. & Hayes, J.J. Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev.19, 677–682 (2005). CASPubMedPubMed Central Google Scholar
Levchenko, V., Jackson, B. & Jackson, V. Histone release during transcription: displacement of the two H2A–H2B dimers in the nucleosome is dependent on different levels of transcription-induced positive stress. Biochemistry44, 5357–5372 (2005). CASPubMed Google Scholar
Chen, H., Li, B. & Workman, J.L. A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J.13, 380–390 (1994). CASPubMedPubMed Central Google Scholar
Walter, P.P., Owen-Hughes, T.A., Cote, J. & Workman, J.L. Stimulation of transcription factor binding and histone displacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer. Mol. Cell. Biol.15, 6178–6187 (1995). CASPubMedPubMed Central Google Scholar
Orphanides, G., LeRoy, G., Chang, C.H., Luse, D.S. & Reinberg, D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell92, 105–116 (1998). CASPubMed Google Scholar
Orphanides, G., Wu, W.H., Lane, W.S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature400, 284–288 (1999). CASPubMed Google Scholar
Ito, T., Ikehara, T., Nakagawa, T., Kraus, W.L. & Muramatsu, M. p300-mediated acetylation facilitates the transfer of histone H2A–H2B dimers from nucleosomes to a histone chaperone. Genes Dev.14, 1899–1907 (2000). CASPubMedPubMed Central Google Scholar
Swaminathan, V., Kishore, A.H., Febitha, K.K. & Kundu, T.K. Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol. Cell. Biol.25, 7534–7545 (2005). CASPubMedPubMed Central Google Scholar
Zlatanova, J., Seebart, C. & Tomschik, M. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J.21, 1294–1310 (2007). CASPubMed Google Scholar
Korber, P. et al. The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J. Biol. Chem.281, 5539–5545 (2006). CASPubMed Google Scholar
Owen-Hughes, T. & Workman, J.L. Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones. EMBO J.15, 4702–4712 (1996). CASPubMedPubMed Central Google Scholar
Jamai, A., Imoberdorf, R.M. & Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell25, 345–355 (2007). CASPubMed Google Scholar
Dion, M.F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science315, 1405–1408 (2007). CASPubMed Google Scholar
Formosa, T. et al. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics162, 1557–1571 (2002). CASPubMedPubMed Central Google Scholar
Schermer, U.J., Korber, P. & Horz, W. Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol. Cell19, 279–285 (2005). CASPubMed Google Scholar
Endoh, M. et al. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol. Cell. Biol.24, 3324–3336 (2004). CASPubMedPubMed Central Google Scholar
Chimura, T., Kuzuhara, T. & Horikoshi, M. Identification and characterization of CIA/ASF1 as an interactor of bromodomains associated with TFIID. Proc. Natl. Acad. Sci. USA99, 9334–9339 (2002). CASPubMedPubMed Central Google Scholar
Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J.22, 1846–1856 (2003). CASPubMedPubMed Central Google Scholar
Konev, A.Y. et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science317, 1087–1090 (2007). CASPubMedPubMed Central Google Scholar
Brickner, D.G. et al. H2A.Z-mediatedlocalization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol.5, e81 (2007). PubMedPubMed Central Google Scholar
Leno, G.H., Mills, A.D., Philpott, A. & Laskey, R.A. Hyperphosphorylation of nucleoplasmin facilitates Xenopus sperm decondensation at fertilization. J. Biol. Chem.271, 7253–7256 (1996). CASPubMed Google Scholar
Downs, J.A., Nussenzweig, M.C. & Nussenzweig, A. Chromatin dynamics and the preservation of genetic information. Nature447, 951–958 (2007). CASPubMed Google Scholar
Bao, Y. & Shen, X. Chromatin remodeling in DNA double-strand break repair. Curr. Opin. Genet. Dev.17, 126–131 (2007). CASPubMed Google Scholar
Altaf, M., Saksouk, N. & Cote, J. Histone modifications in response to DNA damage. Mutat. Res.618, 81–90 (2007). CASPubMed Google Scholar
Osley, M.A., Tsukuda, T. & Nickoloff, J.A. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat. Res.618, 65–80 (2007). CASPubMedPubMed Central Google Scholar
Rodrigue, A. et al. Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J.25, 222–231 (2006). CASPubMedPubMed Central Google Scholar
Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol.9, 675–682 (2007). CASPubMedPubMed Central Google Scholar
Berkovich, E., Monnat, R.J. Jr. & Kastan, M.B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat. Cell Biol.9, 683–690 (2007). CASPubMed Google Scholar
Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol.146, 905–916 (1999). CASPubMedPubMed Central Google Scholar
Fillingham, J., Keogh, M.C. & Krogan, N.J. GammaH2AX and its role in DNA double-strand break repair. Biochem. Cell Biol.84, 568–577 (2006). CASPubMed Google Scholar
Bewersdorf, J., Bennett, B.T. & Knight, K.L. H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proc. Natl. Acad. Sci. USA103, 18137–18142 (2006). CASPubMedPubMed Central Google Scholar
Kent, N.A., Chambers, A.L. & Downs, J.A. Dual chromatin-remodelling roles for RSC during DNA double-strand break induction and repair at the yeast MAT locus. J. Biol. Chem.282, 27693–27701 (2007). CASPubMed Google Scholar
Kim, J.A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J.E. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J. Cell Biol.178, 209–218 (2007). CASPubMedPubMed Central Google Scholar
Downs, J.A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell16, 979–990 (2004). CASPubMed Google Scholar
Morrison, A.J. et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell119, 767–775 (2004). CASPubMed Google Scholar
Shen, X., Ranallo, R., Choi, E. & Wu, C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell12, 147–155 (2003). CASPubMed Google Scholar
van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S.M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell119, 777–788 (2004). CASPubMed Google Scholar
Qin, S. & Parthun, M.R. Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol. Cell. Biol.26, 3649–3658 (2006). CASPubMedPubMed Central Google Scholar
Parthun, M.R., Widom, J. & Gottschling, D.E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell87, 85–94 (1996). CASPubMed Google Scholar
Tamburini, B.A. & Tyler, J.K. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol. Cell. Biol.25, 4903–4913 (2005). CASPubMedPubMed Central Google Scholar
Chowdhury, D. et al. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol. Cell20, 801–809 (2005). CASPubMed Google Scholar
Keogh, M.C. et al. A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature439, 497–501 (2006). CASPubMed Google Scholar
Cheung, W.L. et al. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr. Biol.15, 656–660 (2005). CASPubMed Google Scholar
Papamichos-Chronakis, M., Krebs, J.E. & Peterson, C.L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev.20, 2437–2449 (2006). CASPubMedPubMed Central Google Scholar
Squatrito, M., Gorrini, C. & Amati, B. Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol.16, 433–442 (2006). CASPubMed Google Scholar
Shim, E.Y., Ma, J.L., Oum, J.H., Yanez, Y. & Lee, S.E. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol.25, 3934–3944 (2005). CASPubMedPubMed Central Google Scholar
Chai, B., Huang, J., Cairns, B.R. & Laurent, B.C. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev.19, 1656–1661 (2005). CASPubMedPubMed Central Google Scholar
Polo, S.E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell127, 481–493 (2006). CASPubMed Google Scholar
Tyler, J.K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature402, 555–560 (1999). CASPubMed Google Scholar
Kuzuhara, T. & Horikoshi, M. A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. Nat. Struct. Mol. Biol.11, 275–283 (2004). CASPubMed Google Scholar
Kleinschmidt, J.A., Fortkamp, E., Krohne, G., Zentgraf, H. & Franke, W.W. Co-existence of two different types of soluble histone complexes in nuclei of Xenopus laevis oocytes. J. Biol. Chem.260, 1166–1176 (1985). CASPubMed Google Scholar
Bortvin, A. & Winston, F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science272, 1473–1476 (1996). CASPubMed Google Scholar
Huang, S. et al. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc. Natl. Acad. Sci. USA102, 13410–13415 (2005). CASPubMedPubMed Central Google Scholar
Laskey, R.A., Honda, B.M., Mills, A.D. & Finch, J.T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature275, 416–420 (1978). CASPubMed Google Scholar
Okuwaki, M., Matsumoto, K., Tsujimoto, M. & Nagata, K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett.506, 272–276 (2001). CASPubMed Google Scholar
Rougeulle, C. & Avner, P. Cloning and characterization of a murine brain specific gene Bpx and its human homologue lying within the Xic candidate region. Hum. Mol. Genet.5, 41–49 (1996). CASPubMed Google Scholar
Okuwaki, M. & Nagata, K. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template. J. Biol. Chem.273, 34511–34518 (1998). CASPubMed Google Scholar
Wang, G.S. et al. Transcriptional modification by a CASK-interacting nucleosome assembly protein. Neuron42, 113–128 (2004). CASPubMed Google Scholar
Selth, L. & Svejstrup, J.Q. Vps75, a new yeast member of the NAP histone chaperone family. J. Biol. Chem.282, 12358–12362 (2007). CASPubMed Google Scholar
Ai, X. & Parthun, M.R. The nuclear Hat1p/Hat2p complex: a molecular link between type B histone acetyltransferases and chromatin assembly. Mol. Cell14, 195–205 (2004). CASPubMed Google Scholar
Loyola, A., LeRoy, G., Wang, Y.H. & Reinberg, D. Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev.15, 2837–2851 (2001). CASPubMedPubMed Central Google Scholar
Peterson, C.L., Zhao, Y. & Chait, B.T. Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family. J. Biol. Chem.273, 23641–23644 (1998). CASPubMed Google Scholar
Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell90, 145–155 (1997). CASPubMed Google Scholar