Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo (original) (raw)

References

  1. TerBush, D.R. & Novick, P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 130, 299–312 (1995).
    Article CAS Google Scholar
  2. TerBush, D., Maurice, T., Roth, D. & Novick, P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).
    Article CAS Google Scholar
  3. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).
    Article CAS Google Scholar
  4. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).
    Article CAS Google Scholar
  5. Finger, F.P., Hughes, T.E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571 (1998).
    Article CAS Google Scholar
  6. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).
    Article CAS Google Scholar
  7. Yeaman, C., Grindstaff, K.K. & Nelson, W.J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 117, 559–570 (2004).
    Article CAS Google Scholar
  8. Inoue, M., Chang, L., Hwang, J., Chiang, S.H. & Saltiel, A.R. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 422, 629–633 (2003).
    Article CAS Google Scholar
  9. Vega, I.E. & Hsu, S.-C. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 21, 3839–3848 (2001).
    Article CAS Google Scholar
  10. Murthy, M., Garza, D., Scheller, R.H. & Schwarz, T.L. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433–447 (2003).
    Article CAS Google Scholar
  11. Bennett, M.K. & Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90, 2559–2563 (1993).
    Article CAS Google Scholar
  12. Friedrich, G.A., Hildebrand, J.D. & Soriano, P. The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse. Dev. Biol. 192, 364–374 (1997).
    Article CAS Google Scholar
  13. Mehta, S.Q. et al. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 46, 219–232 (2005).
    Article CAS Google Scholar
  14. Zhang, X.M., Ellis, S., Sriratana, A., Mitchell, C.A. & Rowe, T. Sec15 is an effector for the Rab11 GTPase in mammalian cells. J. Biol. Chem. 279, 43027–43034 (2004).
    Article CAS Google Scholar
  15. Marchler-Bauer, A. et al. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res. 31, 383–387 (2003).
    Article CAS Google Scholar
  16. Deretic, D. Rab proteins and post-Golgi trafficking of rhodopsin in photoreceptor cells. Electrophoresis 18, 2537–2541 (1997).
    Article CAS Google Scholar
  17. Satoh, A.K., O'Tousa, J.E., Ozaki, K. & Ready, D.F. Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132, 1487–1497 (2005).
    Article CAS Google Scholar
  18. Wolff, T. & Ready, D.F. Pattern formation in the Drosophila retina. in The Development of Drosophila melanogaster Vol. II (eds. Bate, M. & Martinez-Arias, A.) 1277–1325 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1993).
    Google Scholar
  19. Segev, N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol. 13, 500–511 (2001).
    Article CAS Google Scholar
  20. Pereira-Leal, J.B. & Seabra, M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889–901 (2001).
    Article CAS Google Scholar
  21. Lloyd, T.E. et al. A genome-wide search for synaptic vesicle cycle proteins in Drosophila. Neuron 26, 45–50 (2000).
    Article CAS Google Scholar
  22. Fischer von Mollard, G. et al. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA 87, 1988–1992 (1990).
    Article CAS Google Scholar
  23. Stahl, B., Chou, J.H., Li, C., Sudhof, T.C. & Jahn, R. Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. EMBO J. 15, 1799–1809 (1996).
    Article CAS Google Scholar
  24. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Sudhof, T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598 (1997).
    Article CAS Google Scholar
  25. Nonet, M.L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073 (1997).
    Article CAS Google Scholar
  26. Regazzi, R. et al. Expression, localization and functional role of small GTPases of the Rab3 family in insulin-secreting cells. J. Cell Sci. 109, 2265–2273 (1996).
    CAS PubMed Google Scholar
  27. Yi, Z. et al. The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Mol. Cell. Biol. 22, 1858–1867 (2002).
    Article CAS Google Scholar
  28. Araki, K. et al. Small Gtpase rab3A is associated with melanosomes in melanoma cells. Pigment Cell Res. 13, 332–336 (2000).
    Article CAS Google Scholar
  29. Bahadoran, P. et al. Rab27a: A key to melanosome transport in human melanocytes. J. Cell Biol. 152, 843–850 (2001).
    Article CAS Google Scholar
  30. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).
    Article CAS Google Scholar
  31. Wilson, S.M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. USA 97, 7933–7938 (2000).
    Article CAS Google Scholar
  32. Ang, A.L., Folsch, H., Koivisto, U.M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol. 163, 339–350 (2003).
    Article CAS Google Scholar
  33. Vyas, N.K., Vyas, M.N. & Quiocho, F.A. Crystal structure of M. tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. Structure 11, 765–774 (2003).
    Article CAS Google Scholar
  34. Panic, B., Perisic, O., Veprintsev, D.B., Williams, R.L. & Munro, S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol. Cell 12, 863–874 (2003).
    Article CAS Google Scholar
  35. Zhu, G. et al. Structural basis of Rab5-Rabaptin5 interaction in endocytosis. Nat. Struct. Mol. Biol. 11, 975–983 (2004).
    Article CAS Google Scholar
  36. Ostermeier, C. & Brunger, A.T. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96, 363–374 (1999).
    Article CAS Google Scholar
  37. Pasqualato, S. et al. The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. J. Biol. Chem. 279, 11480–11488 (2004).
    Article CAS Google Scholar
  38. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).
    Article CAS Google Scholar
  39. Fukuda, M. Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. J. Biol. Chem. 278, 15373–15380 (2003).
    Article CAS Google Scholar
  40. Jafar-Nejad, H. et al. Sec15, a component of the exocyst, promotes Notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev. Cell published online 1 Sep 2005.
  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article CAS Google Scholar
  42. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
    Article Google Scholar
  43. La Fortelle, E.D. & Bricogne, G. SHARP program for statistical heavy-atom refinement. Methods Enzymol. 276, 472–494 (1997).
    Article Google Scholar
  44. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. D Biol. Crystallogr. 47, 110–119 (1991).
    Article Google Scholar
  45. Van Vactor, D., Jr., Krantz, D.E., Reinke, R. & Zipursky, S.L. Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell 52, 281–290 (1988).
    Article CAS Google Scholar
  46. Dollar, G., Struckhoff, E., Michaud, J. & Cohen, R.S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517–526 (2002).
    CAS PubMed Google Scholar

Download references