Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo (original) (raw)
References
TerBush, D.R. & Novick, P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol.130, 299–312 (1995). ArticleCAS Google Scholar
TerBush, D., Maurice, T., Roth, D. & Novick, P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J.15, 6483–6494 (1996). ArticleCAS Google Scholar
Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J.18, 1071–1080 (1999). ArticleCAS Google Scholar
Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell21, 205–215 (1980). ArticleCAS Google Scholar
Finger, F.P., Hughes, T.E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell92, 559–571 (1998). ArticleCAS Google Scholar
Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell93, 731–740 (1998). ArticleCAS Google Scholar
Yeaman, C., Grindstaff, K.K. & Nelson, W.J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci.117, 559–570 (2004). ArticleCAS Google Scholar
Inoue, M., Chang, L., Hwang, J., Chiang, S.H. & Saltiel, A.R. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature422, 629–633 (2003). ArticleCAS Google Scholar
Vega, I.E. & Hsu, S.-C. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci.21, 3839–3848 (2001). ArticleCAS Google Scholar
Murthy, M., Garza, D., Scheller, R.H. & Schwarz, T.L. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron37, 433–447 (2003). ArticleCAS Google Scholar
Bennett, M.K. & Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA90, 2559–2563 (1993). ArticleCAS Google Scholar
Friedrich, G.A., Hildebrand, J.D. & Soriano, P. The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse. Dev. Biol.192, 364–374 (1997). ArticleCAS Google Scholar
Mehta, S.Q. et al. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron46, 219–232 (2005). ArticleCAS Google Scholar
Zhang, X.M., Ellis, S., Sriratana, A., Mitchell, C.A. & Rowe, T. Sec15 is an effector for the Rab11 GTPase in mammalian cells. J. Biol. Chem.279, 43027–43034 (2004). ArticleCAS Google Scholar
Marchler-Bauer, A. et al. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res.31, 383–387 (2003). ArticleCAS Google Scholar
Deretic, D. Rab proteins and post-Golgi trafficking of rhodopsin in photoreceptor cells. Electrophoresis18, 2537–2541 (1997). ArticleCAS Google Scholar
Satoh, A.K., O'Tousa, J.E., Ozaki, K. & Ready, D.F. Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development132, 1487–1497 (2005). ArticleCAS Google Scholar
Wolff, T. & Ready, D.F. Pattern formation in the Drosophila retina. in The Development of Drosophila melanogaster Vol. II (eds. Bate, M. & Martinez-Arias, A.) 1277–1325 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1993). Google Scholar
Segev, N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol.13, 500–511 (2001). ArticleCAS Google Scholar
Pereira-Leal, J.B. & Seabra, M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol.313, 889–901 (2001). ArticleCAS Google Scholar
Lloyd, T.E. et al. A genome-wide search for synaptic vesicle cycle proteins in Drosophila. Neuron26, 45–50 (2000). ArticleCAS Google Scholar
Fischer von Mollard, G. et al. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA87, 1988–1992 (1990). ArticleCAS Google Scholar
Stahl, B., Chou, J.H., Li, C., Sudhof, T.C. & Jahn, R. Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. EMBO J.15, 1799–1809 (1996). ArticleCAS Google Scholar
Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Sudhof, T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature388, 593–598 (1997). ArticleCAS Google Scholar
Nonet, M.L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci.17, 8061–8073 (1997). ArticleCAS Google Scholar
Regazzi, R. et al. Expression, localization and functional role of small GTPases of the Rab3 family in insulin-secreting cells. J. Cell Sci.109, 2265–2273 (1996). CASPubMed Google Scholar
Yi, Z. et al. The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Mol. Cell. Biol.22, 1858–1867 (2002). ArticleCAS Google Scholar
Araki, K. et al. Small Gtpase rab3A is associated with melanosomes in melanoma cells. Pigment Cell Res.13, 332–336 (2000). ArticleCAS Google Scholar
Bahadoran, P. et al. Rab27a: A key to melanosome transport in human melanocytes. J. Cell Biol.152, 843–850 (2001). ArticleCAS Google Scholar
Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet.25, 173–176 (2000). ArticleCAS Google Scholar
Wilson, S.M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. USA97, 7933–7938 (2000). ArticleCAS Google Scholar
Ang, A.L., Folsch, H., Koivisto, U.M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol.163, 339–350 (2003). ArticleCAS Google Scholar
Vyas, N.K., Vyas, M.N. & Quiocho, F.A. Crystal structure of M. tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. Structure11, 765–774 (2003). ArticleCAS Google Scholar
Panic, B., Perisic, O., Veprintsev, D.B., Williams, R.L. & Munro, S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol. Cell12, 863–874 (2003). ArticleCAS Google Scholar
Zhu, G. et al. Structural basis of Rab5-Rabaptin5 interaction in endocytosis. Nat. Struct. Mol. Biol.11, 975–983 (2004). ArticleCAS Google Scholar
Ostermeier, C. & Brunger, A.T. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell96, 363–374 (1999). ArticleCAS Google Scholar
Pasqualato, S. et al. The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. J. Biol. Chem.279, 11480–11488 (2004). ArticleCAS Google Scholar
Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci.20, 478–480 (1995). ArticleCAS Google Scholar
Fukuda, M. Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. J. Biol. Chem.278, 15373–15380 (2003). ArticleCAS Google Scholar
Jafar-Nejad, H. et al. Sec15, a component of the exocyst, promotes Notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev. Cell published online 1 Sep 2005.
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). Article Google Scholar
La Fortelle, E.D. & Bricogne, G. SHARP program for statistical heavy-atom refinement. Methods Enzymol.276, 472–494 (1997). Article Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. D Biol. Crystallogr.47, 110–119 (1991). Article Google Scholar
Van Vactor, D., Jr., Krantz, D.E., Reinke, R. & Zipursky, S.L. Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell52, 281–290 (1988). ArticleCAS Google Scholar
Dollar, G., Struckhoff, E., Michaud, J. & Cohen, R.S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development129, 517–526 (2002). CASPubMed Google Scholar