- Parkin DM . Global cancer statistics in the year 2000. Lancet Oncol 2001; 2: 533–543.
Article CAS PubMed Google Scholar
- Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E et al. Cancer statistics, 2004. CA Cancer J Clin 2004; 54: 8–29.
Article PubMed Google Scholar
- Elledge RM, Allred DC . The p53 tumor suppressor gene in breast cancer. Breast Cancer Res Treat 1994; 32: 39–47.
Article CAS PubMed Google Scholar
- Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A et al. Somatic mutation of p53 leads to estrogen receptor alpha-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res 2004; 64: 3525–3532.
Article CAS PubMed Google Scholar
- Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev 1995; 9: 882–895.
Article CAS PubMed Google Scholar
- Meek DW . Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 2009; 9: 714–723.
Article CAS PubMed Google Scholar
- Gasco M, Shami S, Crook T . The p53 pathway in breast cancer. Breast Cancer Res 2002; 4: 70–76.
Article CAS PubMed PubMed Central Google Scholar
- Hussain SP, Harris CC . Molecular epidemiology and carcinogenesis: endogenous and exogenous carcinogens. Mutat Res 2000; 462: 311–322.
Article CAS PubMed Google Scholar
- Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M et al. Gain of function mutations in p53. Nat Genet 1993; 4: 42–46.
Article CAS PubMed Google Scholar
- Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM . A transgenic mouse model for mammary carcinogenesis. Oncogene 1998; 16: 997–1007.
Article CAS PubMed Google Scholar
- Wang XJ, Greenhalgh DA, Jiang A, He D, Zhong L, Brinkley BR et al. Analysis of centrosome abnormalities and angiogenesis in epidermal-targeted p53172H mutant and p53-knockout mice after chemical carcinogenesis: evidence for a gain of function. Mol Carcinog 1998; 23: 185–192.
Article CAS PubMed Google Scholar
- Liu DP, Song H, Xu Y . A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 2010; 29: 949–956.
Article CAS PubMed Google Scholar
- Song H, Hollstein M, Xu Y . p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 2007; 9: 573–580.
Article CAS PubMed Google Scholar
- Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988; 55: 619–625.
Article CAS PubMed Google Scholar
- Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.
Article CAS PubMed Google Scholar
- Cabioglu N, Ozmen V, Kaya H, Tuzlali S, Igci A, Muslumanoglu M et al. Increased lymph node positivity in multifocal and multicentric breast cancer. J Am Coll Surg 2009; 208: 67–74.
Article PubMed Google Scholar
- Weissenbacher TM, Zschage M, Janni W, Jeschke U, Dimpfl T, Mayr D et al. Multicentric and multifocal versus unifocal breast cancer: is the tumor-node-metastasis classification justified? Breast Cancer Res Treat 2010; 122: 27–34.
Article CAS PubMed Google Scholar
- Davidoff AM, Humphrey PA, Iglehart JD, Marks JR . Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 1991; 88: 5006–5010.
Article CAS PubMed PubMed Central Google Scholar
- McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA et al. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest 2009; 119: 2663–2677.
Article CAS PubMed PubMed Central Google Scholar
- Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.
Article CAS PubMed PubMed Central Google Scholar
- Reddy JP, Peddibhotla S, Bu W, Zhao J, Haricharan S, Du YC et al. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation. Proc Natl Acad Sci USA 2010; 107: 3728–3733.
Article CAS PubMed PubMed Central Google Scholar
- Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 2011; 30: 1470–1480.
Article CAS PubMed Google Scholar
- Lu S, Shen K, Wang Y, Santner SJ, Chen J, Brooks SC et al. Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors. Carcinogenesis 2006; 27: 848–855.
Article CAS PubMed Google Scholar
- Bowen TJ, Yakushiji H, Montagna C, Jain S, Ried T, Wynshaw-Boris A . Atm heterozygosity cooperates with loss of Brca1 to increase the severity of mammary gland cancer and reduce ductal branching. Cancer Res 2005; 65: 8736–8746.
Article CAS PubMed Google Scholar
- Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA 2006; 103: 3799–3804.
Article CAS PubMed PubMed Central Google Scholar
- Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 465: 798–802.
Article CAS PubMed Google Scholar
- Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.
Article CAS PubMed Google Scholar
- Kalo E, Buganim Y, Shapira KE, Besserglick H, Goldfinger N, Weisz L et al. Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol Cell Biol 2007; 27: 8228–8242.
Article CAS PubMed PubMed Central Google Scholar
- Kitamura T, Fukuyo Y, Inoue M, Horikoshi NT, Shindoh M, Rogers BE et al. Mutant p53 disrupts the stress MAPK activation circuit induced by ASK1-dependent stabilization of Daxx. Cancer Res 2009; 69: 7681–7688.
Article CAS PubMed PubMed Central Google Scholar
- Gallagher WM, Argentini M, Sierra V, Bracco L, Debussche L, Conseiller E . MBP1: a novel mutant p53-specific protein partner with oncogenic properties. Oncogene 1999; 18: 3608–3616.
Article CAS PubMed Google Scholar
- Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 2009; 139: 1327–1341.
Article PubMed Google Scholar
- Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006; 10: 191–202.
Article CAS PubMed Google Scholar
- Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R et al. Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 2007; 67: 2396–2401.
Article CAS PubMed Google Scholar
- Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A et al. Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res 2009; 69: 4818–4826.
Article CAS PubMed Google Scholar
- Xu Y . DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 2006; 6: 261–270.
Article CAS PubMed Google Scholar
- Smalley MJ . Isolation, culture and analysis of mouse mammary epithelial cells. Methods Mol Biol 2010; 633: 139–170.
Article CAS PubMed Google Scholar