The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia (original) (raw)
Shanafelt TD, Hanson C, Dewald GW, Witzig TE, LaPlant B, Abrahamzon J et al. Karyotype evolution on fluorescent in situ hybridization analysis is associated with short survival in patients with chronic lymphocytic leukemia and is related to CD49d expression. J Clin Oncol 2008; 26: e5–e6. PubMed Google Scholar
Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916. ArticleCASPubMed Google Scholar
Pettitt AR, Jackson R, Carruthers S, Dodd J, Dodd S, Oates M et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: Final results of the National Cancer Research Institute CLL206 Trial. J Clin Oncol 2012; 30: 1647–1655. CASPubMed Google Scholar
Spaner DE . Oral high-dose glucocorticoids and ofatumumab in fludarabine-resistant chronic lymphocytic leukemia. Leukemia 2012; 26: 1144–1145. CASPubMed Google Scholar
Stilgenbauer S, Zenz T, Winkler D, Buhler A, Schlenk RF, Groner S et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2009; 27: 3994–4001. CASPubMed Google Scholar
Castro JE, James DF, Sandoval-Sus JD, Jain S, Bole J, Rassenti L et al. Rituximab in combination with high-dose methylprednisolone for the treatment of chronic lymphocytic leukemia. Leukemia 2009; 23: 1779–1789. CASPubMedPubMed Central Google Scholar
Parikh SA, Keating MJ, O’Brien S, Wang X, Ferrajoli A, Faderl S et al. Frontline chemoimmunotherapy with fludarabine, cyclophosphamide, alemtuzumab, and rituximab for high-risk chronic lymphocytic leukemia. Blood 2011; 118: 2062–2068. CASPubMedPubMed Central Google Scholar
Dreger P, Dohner H, Ritgen M, Bottcher S, Busch R, Dietrich S et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood 2010; 116: 2438–2447. CASPubMed Google Scholar
Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506. CASPubMedPubMed Central Google Scholar
Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44: 47–52. PubMed Google Scholar
Zhang X, Reis M, Khoriaty R, Li Y, Ouillette P, Samayoa J et al. Sequence analysis of 515 kinase genes in chronic lymphocytic leukemia. Leukemia 2011; 25: 1908–1910. CASPubMedPubMed Central Google Scholar
Ouillette P, Collins R, Shakhan S, Li J, Peres E, Kujawski L et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood 2011; 118: 3051–3061. CASPubMedPubMed Central Google Scholar
Gunnarsson R, Mansouri L, Isaksson A, Goransson H, Cahill N, Jansson M et al. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia. Haematologica 2011; 96: 1161–1169. PubMedPubMed Central Google Scholar
Gunnarsson R, Isaksson A, Mansouri M, Goransson H, Jansson M, Cahill N et al. Large but not small copy-number alterations correlate to high-risk genomic aberrations and survival in chronic lymphocytic leukemia: a high-resolution genomic screening of newly diagnosed patients. Leukemia 2010; 24: 211–215. CASPubMed Google Scholar
Lehmann S, Ogawa S, Raynaud SD, Sanada M, Nannya Y, Ticchioni M et al. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. Cancer 2008; 112: 1296–1305. CASPubMed Google Scholar
Pfeifer D, Pantic M, Skatulla I, Rawluk J, Kreutz C, Martens UM et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 2007; 109: 1202–1210. CASPubMed Google Scholar
Brown JR, Hanna M, Tesar B, Werner L, Pochet N, Asara JM et al. Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia. Clin Cancer Res 2012; 18: 3791–3802. CASPubMedPubMed Central Google Scholar
Grubor V, Krasnitz A, Troge JE, Meth JL, Lakshmi B, Kendall JT et al. Novel genomic alterations and clonal evolution in chronic lymphocytic leukemia revealed by representational oligonucleotide microarray analysis (ROMA). Blood 2009; 113: 1294–1303. CASPubMed Google Scholar
Kay NE, Eckel-Passow JE, Braggio E, Vanwier S, Shanafelt TD, Van Dyke DL et al. Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genet Cytogenet 2010; 203: 161–168. CASPubMedPubMed Central Google Scholar
Saddler C, Ouillette P, Kujawski L, Shangary S, Talpaz M, Kaminski M et al. Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 2008; 111: 1584–1593. CASPubMed Google Scholar
Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN . Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 2008; 68: 1012–1021. CASPubMed Google Scholar
Kujawski L, Ouillette P, Erba H, Saddler C, Jakubowiak A, Kaminski M et al. Genomic complexity identifies patients with aggressive chronic lymphocytic leukemia. Blood 2008; 112: 1993–2003. CASPubMedPubMed Central Google Scholar
Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T . Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 2007; 21: 2442–2451. CASPubMed Google Scholar
Ouillette P, Fossum S, Parkin B, Ding L, Bockenstedt P, Al-Zoubi A et al. Aggressive chronic lymphocytic leukemia with elevated genomic complexity is associated with multiple gene defects in the response to DNA double-strand breaks. Clin Cancer Res 2010; 16: 835–847. CASPubMedPubMed Central Google Scholar
Britt-Compton B, Lin TT, Ahmed G, Weston V, Jones RE, Fegan C et al. Extreme telomere erosion in ATM-mutated and 11q-deleted CLL patients is independent of disease stage. Leukemia 2012; 26: 826–830. CASPubMed Google Scholar
Augereau A, T’Kint de Roodenbeke C, Simonet T, Bauwens S, Horard B, Callanan M et al. Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood 2011; 118: 1316–1322. CASPubMed Google Scholar
Lin TT, Letsolo BT, Jones RE, Rowson J, Pratt G, Hewamana S et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood 2010; 116: 1899–1907. CASPubMed Google Scholar
Brugat T, Nguyen-Khac F, Grelier A, Merle-Beral H, Delic J . Telomere dysfunction-induced foci arise with the onset of telomeric deletions and complex chromosomal aberrations in resistant chronic lymphocytic leukemia cells. Blood 2010; 116: 239–249. CASPubMed Google Scholar
Roos G, Krober A, Grabowski P, Kienle D, Buhler A, Dohner H et al. Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood 2008; 111: 2246–2252. CASPubMed Google Scholar
Bullrich F, Veronese ML, Kitada S, Jurlander J, Caligiuri MA, Reed JC et al. Minimal region of loss at 13q14 in B-cell chronic lymphocytic leukemia. Blood 1996; 88: 3109–3115. CASPubMed Google Scholar
Liu Y, Hermanson M, Grander D, Merup M, Wu X, Heyman M et al. 13q deletions in lymphoid malignancies. Blood 1995; 86: 1911–1915. CASPubMed Google Scholar
Kalachikov S, Migliazza A, Cayanis E, Fracchiolla NS, Bonaldo MF, Lawton L et al. Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics 1997; 42: 369–377. CASPubMed Google Scholar
Kitamura E, Su G, Sossey-Alaoui K, Malaj E, Lewis J, Pan HQ et al. A transcription map of the minimally deleted region from 13q14 in B-cell chronic lymphocytic leukemia as defined by large scale sequencing of the 650 kb critical region. Oncogene 2000; 19: 5772–5780. CASPubMed Google Scholar
Kapanadze B, Makeeva N, Corcoran M, Jareborg N, Hammarsund M, Baranova A et al. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14. Genomics 2000; 70: 327–334. CASPubMed Google Scholar
Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2098–2104. CASPubMed Google Scholar
Mabuchi H, Fujii H, Calin G, Alder H, Negrini M, Rassenti L et al. Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia. Cancer Res 2001; 61: 2870–2877. CASPubMed Google Scholar
Ouillette P, Collins R, Shakhan S, Li J, Li C, Shedden K et al. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 6778–6790. CASPubMedPubMed Central Google Scholar
Mosca L, Fabris S, Lionetti M, Todoerti K, Agnelli L, Morabito F et al. Integrative genomics analyses reveal molecularly distinct subgroups of B-cell chronic lymphocytic leukemia patients with 13q14 deletion. Clin Cancer Res 2010; 16: 5641–5653. CASPubMed Google Scholar
Parker H, Rose-Zerilli MJ, Parker A, Chaplin T, Wade R, Gardiner A et al. 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia 2011; 25: 489–497. CASPubMed Google Scholar
Fazi C, Scarfo L, Pecciarini L, Cottini F, Dagklis A, Janus A et al. General population low-count CLL-like MBL persists over time without clinical progression, although carrying the same cytogenetic abnormalities of CLL. Blood 2011; 118: 6618–6625. CASPubMed Google Scholar
Lanasa MC, Allgood SD, Slager SL, Dave SS, Love C, Marti GE et al. Immunophenotypic and gene expression analysis of monoclonal B-cell lymphocytosis shows biologic characteristics associated with good prognosis CLL. Leukemia 2011; 25: 1459–1466. CASPubMedPubMed Central Google Scholar
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529. CASPubMedPubMed Central Google Scholar
Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG et al. Histone deacetylases mediate the silencing of miR-15a, miR-16 and miR-29b in chronic lymphocytic leukemia. Blood 2012; 119: 1162–1172. CASPubMedPubMed Central Google Scholar
Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer cell 2010; 17: 28–40. CASPubMed Google Scholar
Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G et al. Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood 2012; 119: 2981–2990. CASPubMed Google Scholar
Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086. CASPubMedPubMed Central Google Scholar
Hammarsund M, Corcoran MM, Wilson W, Zhu C, Einhorn S, Sangfelt O et al. Characterization of a novel B-CLL candidate gene--DLEU7--located in the 13q14 tumor suppressor locus. FEBS Lett 2004; 556: 75–80. CASPubMed Google Scholar
Brown JR, Hanna M, Tesar B, Pochet N, Vartanov A, Fernandes SM et al. Germline copy number variation associated with Mendelian inheritance of CLL in two families. Leukemia 2012; 26: 1710–1713. CASPubMed Google Scholar
Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L et al. 13q14 deletions in CLL involve cooperating tumor suppressors. Blood 2010; 115: 3916–3922. CASPubMedPubMed Central Google Scholar
Dal Bo M, Rossi FM, Rossi D, Deambrogi C, Bertoni F, Del Giudice I et al. 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2011; 50: 633–643. Google Scholar
Liu Y, Szekely L, Grander D, Soderhall S, Juliusson G, Gahrton G et al. Chronic lymphocytic leukemia cells with allelic deletions at 13q14 commonly have one intact RB1 gene: evidence for a role of an adjacent locus. Proc Natl Acad Sci USA 1993; 90: 8697–8701. CASPubMedPubMed Central Google Scholar
Stilgenbauer S, Dohner H, Bulgay-Morschel M, Weitz S, Bentz M, Lichter P . High frequency of monoallelic retinoblastoma gene deletion in B-cell chronic lymphoid leukemia shown by interphase cytogenetics. Blood 1993; 81: 2118–2124. CASPubMed Google Scholar
Shanafelt TD, Witzig TE, Fink SR, Jenkins RB, Paternoster SF, Smoley SA et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol 2006; 24: 4634–4641. PubMed Google Scholar
Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival and response to DNA damage. Blood 2009; 114: 5307–5314. CASPubMed Google Scholar
Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 2009; 114: 2589–2597. CASPubMed Google Scholar
Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 2009; 15: 995–1004. CASPubMed Google Scholar
Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995; 85: 1580–1589. CASPubMed Google Scholar
Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 2008; 112: 3322–3329. CASPubMed Google Scholar
Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 2009; 23: 117–124. CASPubMed Google Scholar
Rosenwald A, Chuang EY, Davis RE, Wiestner A, Alizadeh AA, Arthur DC et al. Fludarabine treatment of patients with chronic lymphocytic leukemia induces a p53-dependent gene expression response. Blood 2004; 104: 1428–1434. CASPubMed Google Scholar
Tam CS, Shanafelt TD, Wierda WG, Abruzzo LV, Van Dyke DL, O’Brien S et al. De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood 2009; 114: 957–964. CASPubMedPubMed Central Google Scholar
Best OG, Gardiner AC, Davis ZA, Tracy I, Ibbotson RE, Majid A et al. A subset of Binet stage A CLL patients with TP53 abnormalities and mutated IGHV genes have stable disease. Leukemia 2009; 23: 212–214. CASPubMed Google Scholar
Knight SJ, Yau C, Clifford R, Timbs AT, Sadighi Akha E, Dreau HM et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia 2012; 26: 1564–1575. CASPubMedPubMed Central Google Scholar
Braggio E, Kay NE, Vanwier S, Tschumper RC, Smoley S, Eckel-Passow JE et al. Longitudinal genome-wide analysis of patients with chronic lymphocytic leukemia reveals complex evolution of clonal architecture at disease progression and at the time of relapse. Leukemia 2012; 26: 1698–1701. CASPubMedPubMed Central Google Scholar
Stilgenbauer S, Sander S, Bullinger L, Benner A, Leupolt E, Winkler D et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007; 92: 1242–1245. PubMed Google Scholar
Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 2010; 116: 945–952. CASPubMedPubMed Central Google Scholar
Fegan C, Robinson H, Thompson P, Whittaker JA, White D . Karyotypic evolution in CLL: identification of a new sub-group of patients with deletions of 11q and advanced or progressive disease. Leukemia 1995; 9: 2003–2008. CASPubMed Google Scholar
Neilson JR, Auer R, White D, Bienz N, Waters JJ, Whittaker JA et al. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 1997; 11: 1929–1932. CASPubMed Google Scholar
Saiya-Cork K, Collins R, Parkin B, Ouillette P, Kuizon E, Kujawski L et al. A pathobiological role of the insulin receptor in chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 2679–2692. CASPubMedPubMed Central Google Scholar
Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012; 119: 2854–2862. CASPubMed Google Scholar
Mohr J, Helfrich H, Fuge M, Eldering E, Buhler A, Winkler D et al. DNA damage-induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. Blood 2011; 117: 1622–1632. CASPubMed Google Scholar
Herling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ et al. High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 2009; 114: 4675–4686. CASPubMedPubMed Central Google Scholar
Tsimberidou AM, Tam C, Abruzzo LV, O’Brien S, Wierda WG, Lerner S et al. Chemoimmunotherapy may overcome the adverse prognostic significance of 11q deletion in previously untreated patients with chronic lymphocytic leukemia. Cancer 2009; 115: 373–380. PubMed Google Scholar
Dohner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997; 89: 2516–2522. CASPubMed Google Scholar
Shedden K, Li Y, Ouillette P, Malek SN . Characteristics of chronic lymphocytic leukemia with somatically acquired mutations in NOTCH1 exon 34. Leukemia 2012; 26: 1108–1110. CASPubMed Google Scholar
Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012; 119: 329–331. CASPubMedPubMed Central Google Scholar
Lopez C, Delgado J, Costa D, Conde L, Ghita G, Villamor N et al. Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromosomal alterations. Genes Chromosomes Cancer 2012; 51: 881–889. CASPubMed Google Scholar
Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97: 437–441. CASPubMedPubMed Central Google Scholar
Decker S, Zirlik K, Djebatchie L, Hartmann D, Ihorst G, Schmitt-Graeff A et al. Trisomy 12 and elevated GLI1 and PTCH1 transcript levels are biomarkers for Hedgehog-inhibitor responsiveness in CLL. Blood 2012; 119: 997–1007. CASPubMed Google Scholar
Zenz T, Vollmer D, Trbusek M, Smardova J, Benner A, Soussi T et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia 2010; 24: 2072–2079. CASPubMed Google Scholar
Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105. CASPubMedPubMed Central Google Scholar
Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401. CASPubMedPubMed Central Google Scholar
Trbusek M, Smardova J, Malcikova J, Sebejova L, Dobes P, Svitakova M et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J Clin Oncol 2011; 29: 2703–2708. CASPubMed Google Scholar
Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1991; 88: 5413–5417. CASPubMedPubMed Central Google Scholar
Zainuddin N, Murray F, Kanduri M, Gunnarsson R, Smedby KE, Enblad G et al. TP53 mutations are infrequent in newly diagnosed chronic lymphocytic leukemia. Leuk Res 2011; 35: 272–274. CASPubMed Google Scholar
Johnson GG, Sherrington PD, Carter A, Lin K, Liloglou T, Field JK et al. A novel type of p53 pathway dysfunction in chronic lymphocytic leukemia resulting from two interacting single nucleotide polymorphisms within the p21 gene. Cancer Res 2009; 69: 5210–5217. CASPubMed Google Scholar
el Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 1993; 82: 3452–3459. CASPubMed Google Scholar
Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994; 84: 3148–3157. CASPubMed Google Scholar
Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol 2011; 29: 2223–2229. PubMed Google Scholar
Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 4473–4479. PubMed Google Scholar
Sorror ML, Storer BE, Sandmaier BM, Maris M, Shizuru J, Maziarz R et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J Clin Oncol 2008; 26: 4912–4920. PubMedPubMed Central Google Scholar
Malek S . Clinical utility of prognostic markers in chronic lymphocytic leukemia. ASCO Education Book 2010 [review] 263–267.
Bullrich F, Rasio D, Kitada S, Starostik P, Kipps T, Keating M et al. ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Res 1999; 59: 24–27. CASPubMed Google Scholar
Schaffner C, Stilgenbauer S, Rappold GA, Dohner H, Lichter P . Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 1999; 94: 748–753. CASPubMed Google Scholar
Stankovic T, Weber P, Stewart G, Bedenham T, Murray J, Byrd PJ et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 1999; 353: 26–29. CASPubMed Google Scholar
Austen B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 2007; 25: 5448–5457. CASPubMed Google Scholar
Ouillette P, Li J, Shaknovich R, Li Y, Melnick A, Shedden K et al. Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2012, (in press).
Austen B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 2005; 106: 3175–3182. CASPubMed Google Scholar
Cejkova S, Rocnova L, Potesil D, Smardova J, Novakova V, Chumchalova J et al. Presence of heterozygous ATM deletion may not be critical in the primary response of chronic lymphocytic leukemia cells to fludarabine. Eur J Haematol 2009; 82: 133–142. CASPubMed Google Scholar
Lozanski G, Ruppert AS, Heerem NA, Lozanski A, Luca DM, Gordon A et al. Variations of the ATM gene in chronic lymphocytic leukemia patients lack substantial impact on progression-free survival and overall survival: a Cancer and Leukemia Group B Study. Leuk Lymphoma 2012; 53: 1743–1748. CASPubMedPubMed Central Google Scholar
Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012; 119: 329–331. CASPubMedPubMed Central Google Scholar
Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521–529. CASPubMedPubMed Central Google Scholar
Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908. CASPubMedPubMed Central Google Scholar
Brown JR, Levine RL, Thompson C, Basile G, Gilliland DG, Freedman AS . Systematic genomic screen for tyrosine kinase mutations in CLL. Leukemia 2008; 22: 1966–1969. CASPubMedPubMed Central Google Scholar
Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119. CASPubMed Google Scholar
Gahrton G, Robert KH, Friberg K, Zech L, Bird AG . Nonrandom chromosomal aberrations in chronic lymphocytic leukemia revealed by polyclonal B-cell-mitogen stimulation. Blood 1980; 56: 640–647. CASPubMed Google Scholar
Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 1990; 323: 720–724. CASPubMed Google Scholar
Peterson LC, Lindquist LL, Church S, Kay NE . Frequent clonal abnormalities of chromosome band 13q14 in B-cell chronic lymphocytic leukemia: multiple clones, subclones, and nonclonal alterations in 82 midwestern patients. Genes Chromosomes Cancer 1992; 4: 273–280. CASPubMed Google Scholar
Dohner H, Stilgenbauer S, Fischer K, Bentz M, Lichter P . Cytogenetic and molecular cytogenetic analysis of B cell chronic lymphocytic leukemia: specific chromosome aberrations identify prognostic subgroups of patients and point to loci of candidate genes. Leukemia 1997; 11: S19–S24. PubMed Google Scholar
Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C . Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: A study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood 2006; 108: 3152–3160. CASPubMed Google Scholar
Put N, Konings P, Rack K, Jamar M, Van Roy N, Libouton JM et al. Improved detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide and interleukin-2 stimulation: a Belgian multicentric study. Genes Chromosomes Cancer 2009; 48: 843–853. CASPubMed Google Scholar
Mayr C, Speicher MR, Kofler DM, Buhmann R, Strehl J, Busch R et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 2006; 107: 742–751. CASPubMed Google Scholar
Heerema NA, Byrd JC, Dal Cin PS, Dell’ Aquila ML, Koduru PR, Aviram A et al. Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium (CRC) Study. Cancer Genet Cytogenet 2010; 203: 134–140. CASPubMedPubMed Central Google Scholar
Muthusamy N, Breidenbach H, Andritsos L, Flynn J, Jones J, Ramanunni A et al. Enhanced detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide in combination with pokeweed mitogen and phorbol myristate acetate. Cancer Genet 2011; 204: 77–83. CASPubMedPubMed Central Google Scholar
Huh YO, Schweighofer CD, Ketterling RP, Knudson RA, Vega F, Kim JE et al. Chronic lymphocytic leukemia with t(14;19)(q32;q13) is characterized by atypical morphologic and immunophenotypic features and distinctive genetic features. Am J Clin Pathol 2011; 135: 686–696. PubMed Google Scholar
Martin-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F et al. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia 2007; 21: 1532–1544. CASPubMed Google Scholar
Ueshima Y, Bird ML, Vardiman JW, Rowley JDA . 14;19 translocation in B-cell chronic lymphocytic leukemia: a new recurring chromosome aberration. Int J Cancer 1985; 36: 287–290. CASPubMed Google Scholar
Nguyen-Khac F, Chapiro E, Lesty C, Grelier A, Luquet I, Radford-Weiss I et al. Specific chromosomal IG translocations have different prognoses in chronic lymphocytic leukemia. Am J Blood Res 2011; 1: 13–21. CASPubMedPubMed Central Google Scholar
Van Den Neste E, Robin V, Francart J, Hagemeijer A, Stul M, Vandenberghe P et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia 2007; 21: 1715–1722. CASPubMed Google Scholar
Rigolin GM, Cibien F, Martinelli S, Formigaro L, Rizzotto L, Tammiso E et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with ‘normal’ FISH: correlations with clinicobiologic parameters. Blood 2012; 119: 2310–2313. CASPubMed Google Scholar
Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda BD et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 2009; 114: 3872–3879. CASPubMedPubMed Central Google Scholar
Kanduri M, Cahill N, Göransson H, Enström C, Ryan F, Isaksson A et al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood 2010; 115: 296–305. CASPubMed Google Scholar
Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296. CASPubMedPubMed Central Google Scholar
Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612. CASPubMedPubMed Central Google Scholar
Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119: 1182–1189. CASPubMedPubMed Central Google Scholar