TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway (original) (raw)
Okano M, Bell DW, Haber DA, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247–257. ArticleCASPubMed Google Scholar
Smith ZD, Meissner A . DNA methylation: roles inmammalian development. Nat Rev Genet 2013; 14: 204–220. ArticleCASPubMed Google Scholar
Neri F, Krepelova A, Incarnato D, Maldotti M, Parlato C, Galvagni F et al. Dnmt3L antagonizes DNA methylationat bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell 2013; 155: 121–134. ArticleCASPubMed Google Scholar
Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schübeler D . Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet 2011; 43: 1091–1097. ArticleCASPubMed Google Scholar
Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999; 402: 187–191. ArticleCASPubMed Google Scholar
Rhee J-K, Kim K, Chae H, Evans J, Yan P, Zhang B-T et al. Integrated analysis of genome-wide DNA methylation and gene expression profiles in molecular subtypes of breast cancer. Nucleic Acids Res 2013; 41: 8464–8474. ArticleCASPubMedPubMed Central Google Scholar
Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 2012; 22: 837–849. ArticleCASPubMedPubMed Central Google Scholar
Rhee I, Bachman KE, Park BH, Jair K-W, Yen RW, Schuebel KE et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416: 552–556. ArticleCASPubMed Google Scholar
Teng I-W, Hou P-C, Lee K-D, Chu P-Y, Yeh K-T, Jin VX et al. Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res 2011; 71: 4653–4663. ArticleCASPubMed Google Scholar
Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300: 489–492. ArticleCASPubMed Google Scholar
Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM . Predicting aberrant CpG island methylation. Proc Natl Acad Sci USA 2003; 100: 12253–12258. ArticleCASPubMedPubMed Central Google Scholar
Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S et al. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 2007; 28: 2459–2466. ArticleCASPubMed Google Scholar
Suzuki H, Watkins DN, Jair K-W, Schuebel KE, Markowitz SD, Dong Chen W et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36: 417–422. ArticleCASPubMed Google Scholar
Jin B, Yao B, Li JL, Fields CR, Delmas AL, Liu C et al. DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Res 2009; 69: 7412–7421. ArticleCASPubMedPubMed Central Google Scholar
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324: 930–935. ArticleCASPubMedPubMed Central Google Scholar
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333: 1300–1303. ArticleCASPubMedPubMed Central Google Scholar
Maiti A, Drohat AC . Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 2011; 286: 35334–35338. ArticleCASPubMedPubMed Central Google Scholar
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011; 333: 1303–1307. ArticleCASPubMedPubMed Central Google Scholar
Neri F, Incarnato D, Krepelova A, Rapelli S, Pagnani A, Zecchina R et al. Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol 2013; 14: R91. ArticlePubMedPubMed Central Google Scholar
Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2011; 2: 627–637. ArticlePubMedPubMed Central Google Scholar
Kudo Y, Tateishi K, Yamamoto K, Yamamoto S, Asaoka Y, Ijichi H et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci 2012; 103: 670–676. ArticleCASPubMedPubMed Central Google Scholar
Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012; 150: 1135–1146. ArticleCASPubMedPubMed Central Google Scholar
Yang H, Liu Y, Bai F, Zhang JY, Ma S-H, Liu J et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 2013; 32: 663–669. ArticleCASPubMed Google Scholar
Bacher U, Haferlach C, Schnittger S, Kohlmann A, Kern W, Haferlach T . Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies. Ann Hematol 2010; 89: 643–652. ArticleCASPubMed Google Scholar
Kallin EM, Rodríguez-Ubreva J, Christensen J, Cimmino L, Aifantis I, Helin K et al. Tet2 facilitates the derepression of myeloid target genes during CEBPα-induced transdifferentiation of pre-B cells. Mol Cell 2012; 48: 266–276. ArticleCASPubMedPubMed Central Google Scholar
Prensner JR, Chinnaiyan AM . Metabolism unhinged: IDH mutations in cancer. Nat Med 2011; 17: 291–293. ArticleCASPubMed Google Scholar
Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Stem Cell 2013; 13: 87–101. CAS Google Scholar
Jin SG, Jiang Y, Qiu R, Rauch TA, Wang Y, Schackert G et al. 5-hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 2011; 71: 7360–7365. ArticleCASPubMedPubMed Central Google Scholar
Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 2013; 154: 311–322. ArticleCASPubMedPubMed Central Google Scholar
Tefferi A, Pardanani A, Lim K-H, Abdel-Wahab O, Lasho TL, Patel J et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2009; 23: 905–911. ArticleCASPubMedPubMed Central Google Scholar
Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, Della-Valle V, Picard F et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 2009; 114: 3285–3291. ArticleCASPubMed Google Scholar
Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C et al. Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood 2009; 114: 1628–1632. ArticleCASPubMed Google Scholar
Sun M, Song C-X, Huang H, Frankenberger CA, Sankarasharma D, Gomes S et al. HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc Natl Acad Sci USA 2013; 110: 9920–9925. ArticleCASPubMedPubMed Central Google Scholar
Hsu C-H, Peng K-L, Kang M-L, Chen Y-R, Yang Y-C, Tsai C-H et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep 2012; 2: 568–579. ArticleCASPubMed Google Scholar
Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar APN . The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer 2010; 9: 212. ArticlePubMedPubMed Central Google Scholar
Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 2012; 22: 1680–1688. ArticleCASPubMedPubMed Central Google Scholar
Ivanov M, Kals M, Kacevska M, Barragan I, Kasuga K, Rane A et al. Ontogeny, distribution and potential roles of 5-hydroxymethylcytosine in human liver function. Genome Biol 2013; 14: R83. ArticlePubMedPubMed Central Google Scholar
Pfeifer GP, Kadam S, Jin S-G . 5-Hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin 2013; 6: 10. ArticleCASPubMedPubMed Central Google Scholar
Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006; 25: 4116–4121. ArticleCASPubMed Google Scholar
Incarnato D, Neri F, Diamanti D, Oliviero S . MREdictor: a two-step dynamic interaction model that accounts for mRNA accessibility and Pumilio binding accurately predicts microRNA targets. Nucleic Acids Res 2013; 41: 8421–8433. ArticleCASPubMedPubMed Central Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14: R36. ArticlePubMedPubMed Central Google Scholar
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L . Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013; 31: 46–53. ArticleCASPubMed Google Scholar
Evellin S, Galvagni F, Zippo A, Neri F, Orlandini M, Incarnato D et al. FOSL1 controls the assembly of endothelial cells into capillary tubes by direct repression of αv and β3 integrin transcription. Mol Cell Biol 2013; 33: 1198–1209. ArticleCASPubMedPubMed Central Google Scholar
Krepelova A, Neri F, Maldotti M, Rapelli S, Oliviero S . Myc and max genome-wide binding sites analysis links the myc regulatory network with the polycomb and the core pluripotency networks in mouse embryonic stem cells. PLoS ONE 2014; 9: e88933. ArticlePubMedPubMed Central Google Scholar
Neri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, Oliviero S . Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. Mol Cell Biol 2012; 32: 840–851. ArticleCASPubMedPubMed Central Google Scholar
Huang DW, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13. Article Google Scholar
Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57. ArticleCAS Google Scholar