Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems (original) (raw)
Vadia, S. & Levin, P. A. Growth rate and cell size: a re-examination of the growth law. Curr. Opin. Microbiol.24, 96–103 (2015). ArticlePubMedPubMed Central Google Scholar
Sharpe, M. E., Hauser, P. M., Sharpe, R. G. & Errington, J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J. Bacteriol.180, 547–555 (1998). CASPubMedPubMed Central Google Scholar
Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev.32, 149–167 (2008). ArticleCASPubMed Google Scholar
Lebar, M. D. et al. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. J. Am. Chem. Soc.136, 10874–10877 (2014). ArticleCASPubMedPubMed Central Google Scholar
Banzhaf, M. et al. Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol. Microbiol.85, 179–194 (2012). ArticleCASPubMed Google Scholar
Jones, L. J., Carballido-López, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell104, 913–922 (2001). ArticleCASPubMed Google Scholar
van den Ent, F., Amos, L. & Löwe, J. Bacterial ancestry of actin and tubulin. Curr. Opin. Microbiol.4, 634–638 (2001). ArticlePubMed Google Scholar
van den Ent, F., Izoré, T., Bharat, T. A., Johnson, C. M. & Lowe, J. Bacterial actin MreB forms antiparallel double filaments. eLife3, e02634 (2014). ArticlePubMedPubMed Central Google Scholar
Hussain, S. et al. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife7, e32471 (2018). ArticlePubMedPubMed Central Google Scholar
Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science333, 222–225 (2011). ArticleCASPubMedPubMed Central Google Scholar
van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA108, 15822–15827 (2011). ArticlePubMedPubMed Central Google Scholar
Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science333, 225–228 (2011). ArticlePubMed Google Scholar
Turner, R. D., Mesnage, S., Hobbs, J. K. & Foster, S. J. Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun.9, 1263 (2018). ArticlePubMedPubMed Central Google Scholar
McPherson, D. C. & Popham, D. L. Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J. Bacteriol.185, 1423–1431 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol.1, 16172 (2016). ArticleCASPubMedPubMed Central Google Scholar
Ursell, T. S. et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc. Natl Acad. Sci. USA111, E1025–E1034 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wang, S. & Wingreen, N. S. Cell shape can mediate the spatial organization of the bacterial cytoskeleton. Biophys. J.104, 541–552 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tropini, C. et al. Principles of bacterial cell-size determination revealed by cell-wall synthesis perturbations. Cell Rep.9, 1520–1527 (2014). ArticleCASPubMedPubMed Central Google Scholar
Shi, H. et al. Deep phenotypic mapping of bacterial cytoskeletal mutants reveals physiological robustness to cell size. Curr. Biol.27, 3419–3429 (2017). ArticleCASPubMed Google Scholar
Colavin, A., Shi, H. & Huang, K. C. RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape. Nat. Commun.9, 1280 (2018). ArticlePubMedPubMed Central Google Scholar
Olshausen, P. V. et al. Superresolution imaging of dynamic MreB filaments in _B. subtilis_—a multiple-motor-driven transport? Biophys. J.105, 1171–1181 (2013). ArticlePubMedPubMed Central Google Scholar
Shi, H., Bratton, B. P., Gitai, Z. & Huang, K. C. How to build a bacterial cell: MreB as the foreman of E. coli construction. Cell172, 1294–1305 (2018). ArticleCASPubMedPubMed Central Google Scholar
Schirner, K. & Errington, J. Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis. Microbiology155, 3611–3621 (2009). ArticleCASPubMed Google Scholar
Harris, L. K., Dye, N. A. & Theriot, J. A. A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio. Mol. Microbiol. 5, 988–1005 (2014).
Bisson-Filho, A. W. et al. FtsZ filament capping by MciZ, a developmental regulator of bacterial division. Proc. Natl Acad. Sci. USA112, E2130–E2138 (2015). ArticleCASPubMedPubMed Central Google Scholar
Formstone, A. & Errington, J. A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. Mol. Microbiol.55, 1646–1657 (2005). ArticleCASPubMed Google Scholar
Vigouroux, A., Oldewurtel, E., Cui, L., Bikard, D. & van Teeffelen, S. Tuning dCas9’s ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol. Sys. Biol.14, e7899 (2018). Google Scholar
Henriques, A. O., Glaser, P., Piggot, P. J. & Moran, C. P. Jr Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol.28, 235–247 (1998). ArticleCASPubMed Google Scholar
Fraipont, C. et al. The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology157, 251–259 (2010). ArticlePubMed Google Scholar
Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol.25, 385–391 (2015). ArticleCASPubMed Google Scholar
Zheng, H. et al. Interrogating the Escherichia coli cell cycle by cell dimension perturbations. Proc. Natl Acad. Sci. USA113, 15000–15005 (2016). ArticleCASPubMedPubMed Central Google Scholar
Murray, T., Popham, D. L. & Setlow, P. Bacillus subtilis cells lacking penicillin-binding protein 1 require increased levels of divalent cations for growth. J. Bacteriol.180, 4555–4563 (1998).
Popham, D. L. & Setlow, P. Phenotypes of Bacillus subtilis mutants lacking multiple class a high-molecular-weight penicillin-binding proteins. J. Bacteriol.178, 2079–2085 (1996). ArticleCASPubMedPubMed Central Google Scholar
Emami, K. et al. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol.2, 16253 (2017). ArticleCASPubMedPubMed Central Google Scholar
Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods12, 244–250 (2015). ArticleCASPubMedPubMed Central Google Scholar
Oldenbourg, R. Polarized light microscopy: principles and practice. Cold Spring Harb. Protoc.2013, pdb.top078600 (2013).
Probine, M. C. & Preston, R. D. Cell growth and the structure and mechanical properties of the wall in internodal cells of Nitella opacai. Wall structure and growth. J. Exp. Bot.12, 261–282 (1961). ArticleCAS Google Scholar
Inoué, S. Polarization Microscopy. Curr. Protoc. Cell Biol.13, 4.9.1–4.9.27 (2002).
Verwer, R. W., Beachey, E. H., Keck, W., Stoub, A. M. & Poldermans, J. E. Oriented fragmentation of Escherichia coli sacculi by sonication. J. Bacteriol.141, 327–332 (1980). CASPubMedPubMed Central Google Scholar
Yao, X., Jericho, M., Pink, D. & Beveridge, T. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol.181, 6865–6875 (1999). CASPubMedPubMed Central Google Scholar
Bratton, B. P., Shaevitz, J. W., Gitai, Z. & Morgenstein, R. M. MreB polymers and curvature localization are enhanced by RodZ and predict _E. coli_’s cylindrical uniformity. Nat. Commun.9, 2797 (2018). ArticlePubMedPubMed Central Google Scholar
Kurita, K., Shin, R., Tabei, T. & Shiomi, D. Relation between rotation of MreB actin and cell width of Escherichia coli. Genes Cells24, 259–265 (2018).
Rojas, E. R., Huang, K. C. & Theriot, J. A. Homeostatic cell growth is accomplished mechanically through membrane tension inhibition of cell-wall synthesis. Cell Syst.5, 578–590 (2017). ArticleCASPubMedPubMed Central Google Scholar
Leaver, M. & Errington, J. Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis. Mol. Microbiol.57, 1196–1209 (2005). ArticleCASPubMed Google Scholar
Kawai, Y., Daniel, R. A. & Errington, J. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. Mol. Microbiol.71, 1131–1144 (2009). ArticlePubMed Google Scholar
Lai, G. C., Cho, H. & Bernhardt, T. G. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLoS Genet.13, e1006934 (2017). ArticlePubMedPubMed Central Google Scholar
Lee, T. K., Meng, K., Shi, H. & Huang, K. C. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells. Nat. Commun.7, 13170 (2016). ArticleCASPubMedPubMed Central Google Scholar
Agresti, A. & Coull, B. A. Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am. Stat.52, 119–126 (1998). Google Scholar
Ursell, T. et al. Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. BMC Biol.15, 17 (2017). ArticlePubMedPubMed Central Google Scholar
Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods12, 244–250 (2015). ArticleCASPubMedPubMed Central Google Scholar
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods115, 80–90 (2017). ArticleCASPubMed Google Scholar
Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. & Gustafsson, M. G. L. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods6, 339–342 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kall, L., Storey, J. D. & Noble, W. S. Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinformatics24, i42–i48 (2008). ArticlePubMedPubMed Central Google Scholar
Morgenstein, R. M. et al. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proc. Natl Acad. Sci. USA112, 12510–12515 (2015). ArticleCASPubMedPubMed Central Google Scholar