Cellular signalling by primary cilia in development, organ function and disease (original) (raw)
Satir, P. & Christensen, S. T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol.69, 377–400 (2007). ArticleCASPubMed Google Scholar
Kenny, T. D. & Beales, P. L. (eds) Ciliopathies: A Reference for Clinicians (Oxford Univ. Press, 2014).
Heydeck, W., Fievet, L., Davis, E. E. & Katsanis, N. The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr. Opin. Cell Biol.55, 139–149 (2018). ArticleCASPubMedPubMed Central Google Scholar
Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol.15, 363–377 (1962). ArticleCASPubMedPubMed Central Google Scholar
Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci.3, 207–230 (1968). CASPubMed Google Scholar
Avasthi, P. & Marshall, W. F. Stages of ciliogenesis and regulation of ciliary length. Differentiation83, S30–42 (2012). ArticleCASPubMed Google Scholar
Broekhuis, J. R., Leong, W. Y. & Jansen, G. Regulation of cilium length and intraflagellar transport. Int. Rev. Cell. Mol. Biol.303, 101–138 (2013). ArticleCASPubMed Google Scholar
Tucker, R. W., Pardee, A. B. & Fujiwara, K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell17, 527–535 (1979). ArticleCASPubMed Google Scholar
Rieder, C. L., Jensen, C. G. & Jensen, L. C. The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J. Ultrastruct. Res.68, 173–185 (1979). ArticleCASPubMed Google Scholar
Tucker, R. W., Scher, C. D. & Stiles, C. D. Centriole deciliation associated with the early response of 3T3 cells to growth factors but not to SV40. Cell18, 1065–1072 (1979). ArticleCASPubMed Google Scholar
Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell129, 1351–1363 (2007). ArticleCASPubMedPubMed Central Google Scholar
Spalluto, C., Wilson, D. I. & Hearn, T. Evidence for reciliation of RPE1 cells in late G1 phase, and ciliary localisation of cyclin B1. FEBS Open Bio3, 334–340 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ford, M. J. et al. A cell/cilia cycle biosensor for single-cell kinetics reveals persistence of cilia after G1/S transition is a general property in cells and mice. Dev. Cell47, 509–523 (2018). ArticleCASPubMedPubMed Central Google Scholar
Das, R. M. & Storey, K. G. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science343, 200–204 (2014). ArticleCASPubMedPubMed Central Google Scholar
McDermott, K. M., Liu, B. Y., Tlsty, T. D. & Pazour, G. J. Primary cilia regulate branching morphogenesis during mammary gland development. Curr. Biol.20, 731–737 (2010). ArticleCASPubMedPubMed Central Google Scholar
Blitzer, A. L. et al. Primary cilia dynamics instruct tissue patterning and repair of corneal endothelium. Proc. Natl Acad. Sci. USA108, 2819–2824 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bangs, F. K., Schrode, N., Hadjantonakis, A. K. & Anderson, K. V. Lineage specificity of primary cilia in the mouse embryo. Nat. Cell Biol.17, 113–122 (2015). ArticleCASPubMedPubMed Central Google Scholar
May-Simera, H. L. et al. Primary cilium-mediated retinal pigment epithelium maturation is disrupted in ciliopathy patient cells. Cell Rep.22, 189–205 (2018). ArticleCASPubMedPubMed Central Google Scholar
Iomini, C., Tejada, K., Mo, W., Vaananen, H. & Piperno, G. Primary cilia of human endothelial cells disassemble under laminar shear stress. J. Cell Biol.164, 811–817 (2004). ArticleCASPubMedPubMed Central Google Scholar
Garcia-Gonzalo, F. R. & Reiter, J. F. Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol.9, a028134 (2016). ArticleCAS Google Scholar
Sung, C. H. & Leroux, M. R. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat. Cell Biol.15, 1387–1397 (2013). ArticleCASPubMedPubMed Central Google Scholar
Morthorst, S. K., Christensen, S. T. & Pedersen, L. B. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J.285, 4535–4564 (2018). ArticleCASPubMed Google Scholar
Wood, C. R., Huang, K., Diener, D. R. & Rosenbaum, J. L. The cilium secretes bioactive ectosomes. Curr. Biol.23, 906–911 (2013). ArticleCASPubMed Google Scholar
Cao, M. et al. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife4, e05242 (2015). ArticlePubMed CentralCAS Google Scholar
Nager, A. R. et al. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell168, 252–263 (2017). ArticleCASPubMed Google Scholar
Pedersen, L. B. & Rosenbaum, J. L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol.85, 23–61 (2008). ArticleCASPubMed Google Scholar
Prevo, B., Scholey, J. M. & Peterman, E. J. G. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J.284, 2905–2931 (2017). ArticleCASPubMedPubMed Central Google Scholar
Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA90, 5519–5523 (1993). ArticleCASPubMedPubMed Central Google Scholar
Walther, Z., Vashishtha, M. & Hall, J. L. The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J. Cell Biol.126, 175–188 (1994). ArticleCASPubMed Google Scholar
Kozminski, K. G., Beech, P. L. & Rosenbaum, J. L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol.131, 1517–1527 (1995). ArticleCASPubMed Google Scholar
Vashishtha, M., Walther, Z. & Hall, J. L. The kinesin-homologous protein encoded by the Chlamydomonas FLA10 gene is associated with basal bodies and centrioles. J. Cell Sci.109, 541–549 (1996). CASPubMed Google Scholar
Pazour, G. J., Wilkerson, C. G. & Witman, G. B. A dynein light chain is essential for retrograde particle movement in intraflagellar transport (IFT). J. Cell Biol.141, 979–992 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol.144, 473–481 (1999). ArticleCASPubMedPubMed Central Google Scholar
Porter, M. E., Bower, R., Knott, J. A., Byrd, P. & Dentler, W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol. Biol. Cell10, 693–712 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. Functional coordination of intraflagellar transport motors. Nature436, 583–587 (2005). ArticleCASPubMed Google Scholar
Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol.6, 1109–1113 (2004). ArticleCASPubMed Google Scholar
Zhao, C., Omori, Y., Brodowska, K., Kovach, P. & Malicki, J. Kinesin-2 family in vertebrate ciliogenesis. Proc. Natl Acad. Sci. USA109, 2388–2393 (2012). ArticleCASPubMedPubMed Central Google Scholar
Prevo, B., Mangeol, P., Oswald, F., Scholey, J. M. & Peterman, E. J. Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia. Nat. Cell Biol.17, 1536–1545 (2015). ArticleCASPubMed Google Scholar
Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol.141, 993–1008 (1998). ArticleCASPubMedPubMed Central Google Scholar
Piperno, G. & Mead, K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc. Natl Acad. Sci. USA94, 4457–4462 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol.3, 813–825 (2002). ArticleCASPubMed Google Scholar
Taschner, M., Kotsis, F., Braeuer, P., Kuehn, E. W. & Lorentzen, E. Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. J. Cell Biol.207, 269–282 (2014). ArticleCASPubMedPubMed Central Google Scholar
Toropova, K., Mladenov, M. & Roberts, A. J. Intraflagellar transport dynein is autoinhibited by trapping of its mechanical and track-binding elements. Nat. Struct. Mol. Biol.24, 461–468 (2017). ArticleCASPubMedPubMed Central Google Scholar
Funabashi, T., Katoh, Y., Okazaki, M., Sugawa, M. & Nakayama, K. Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for ciliogenesis. J. Cell Biol.217, 2867–2876 (2018). ArticleCASPubMedPubMed Central Google Scholar
Mohamed, M. A. A., Stepp, W. L. & Okten, Z. Reconstitution reveals motor activation for intraflagellar transport. Nature557, 387–391 (2018). ArticleCASPubMedPubMed Central Google Scholar
Liang, Y., Zhu, X., Wu, Q. & Pan, J. Ciliary length sensing regulates IFT entry via changes in FLA8/KIF3B phosphorylation to control ciliary assembly. Curr. Biol.28, 2429–2435 (2018). ArticleCASPubMed Google Scholar
Jordan, M. A., Diener, D. R., Stepanek, L. & Pigino, G. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol.20, 1250–1255 (2018). ArticleCASPubMed Google Scholar
Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol.117, 456–487 (1986). ArticleCASPubMed Google Scholar
Pedersen, L. B. et al. Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr. Biol.15, 262–266 (2005). ArticleCASPubMed Google Scholar
Qin, H. et al. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr. Biol.15, 1695–1699 (2005). ArticleCASPubMed Google Scholar
Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev.24, 2180–2193 (2010). ArticleCASPubMedPubMed Central Google Scholar
Behal, R. H. et al. Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins. J. Biol. Chem.287, 11689–11703 (2012). ArticleCASPubMed Google Scholar
Liem, K. F. Jr. et al. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J. Cell Biol.197, 789–800 (2012). ArticleCASPubMedPubMed Central Google Scholar
Keady, B. T. et al. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev. Cell22, 940–951 (2012). ArticleCASPubMedPubMed Central Google Scholar
Eguether, T., Cordelieres, F. P. & Pazour, G. J. Intraflagellar transport is deeply integrated in hedgehog signaling. Mol. Biol. Cell29, 1178–1189 (2018). ArticlePubMedPubMed Central Google Scholar
Mourão, A., Christensen, S. T. & Lorentzen, E. The intraflagellar transport machinery in ciliary signaling. Curr. Opin. Struct. Biol.41, 98–108 (2016). ArticlePubMedCAS Google Scholar
Badgandi, H. B., Hwang, S. H., Shimada, I. S., Loriot, E. & Mukhopadhyay, S. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J. Cell Biol.216, 743–760 (2017). ArticleCASPubMedPubMed Central Google Scholar
Takahara, M. et al. Ciliopathy-associated mutations of IFT122 impair ciliary protein trafficking but not ciliogenesis. Hum. Mol. Genet.27, 516–528 (2018). ArticleCASPubMed Google Scholar
Hirano, T., Katoh, Y. & Nakayama, K. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol. Biol. Cell28, 429–439 (2017). ArticleCASPubMedPubMed Central Google Scholar
Fu, W., Wang, L., Kim, S., Li, J. & Dynlacht, B. D. Role for the IFT-A complex in selective transport to the primary cilium. Cell Rep.17, 1505–1517 (2016). ArticleCASPubMedPubMed Central Google Scholar
Caparrós-Martín, J. A. et al. Specific variants in WDR35 cause a distinctive form of Ellis-van Creveld syndrome by disrupting the recruitment of the EvC complex and SMO into the cilium. Hum. Mol. Genet.24, 4126–4137 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Boubakri, M. et al. Loss of ift122, a retrograde intraflagellar transport (IFT) complex component, leads to slow, progressive photoreceptor degeneration due to inefficient opsin transport. J. Biol. Chem.291, 24465–24474 (2016). ArticleCASPubMedPubMed Central Google Scholar
Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell129, 1201–1213 (2007). ArticleCASPubMed Google Scholar
Lechtreck, K. F. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol.187, 1117–1132 (2009). ArticleCASPubMedPubMed Central Google Scholar
Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C. & Mykytyn, K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl Acad. Sci. USA105, 4242–4246 (2008). ArticleCASPubMedPubMed Central Google Scholar
Loktev, A. V. & Jackson, P. K. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep.5, 1316–1329 (2013). ArticleCASPubMed Google Scholar
Jin, H. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell141, 1208–1219 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lechtreck, K. F. et al. Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. J. Cell Biol.201, 249–261 (2013). ArticleCASPubMedPubMed Central Google Scholar
Nachury, M. V. The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol.51, 124–131 (2018). ArticleCASPubMedPubMed Central Google Scholar
Wingfield, J. L., Lechtreck, K.-F. & Lorentzen, E. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem.62, 753–763 (2018). ArticlePubMedPubMed Central Google Scholar
Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol.151, 709–718 (2000). ArticleCASPubMedPubMed Central Google Scholar
Moyer, J. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science264, 1329–1333 (1994). ArticleCASPubMed Google Scholar
Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature401, 386–389 (1999). CASPubMed Google Scholar
Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol.13, 2508–2516 (2002). ArticleCASPubMed Google Scholar
Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L. & Witman, G. B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol.12, R378–R380 (2002). ArticleCASPubMed Google Scholar
Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet.33, 129–137 (2003). ArticleCASPubMed Google Scholar
Ma, M., Gallagher, A. R. & Somlo, S. Ciliary mechanisms of cyst formation in polycystic kidney disease. Cold Spring Harb. Perspect. Biol.9, a028209 (2017). ArticlePubMedPubMed Central Google Scholar
Pennekamp, P. et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol.12, 938–943 (2002). ArticleCASPubMed Google Scholar
Bataille, S. et al. Association of PKD2 (polycystin 2) mutations with left-right laterality defects. Am. J. Kidney Dis.58, 456–460 (2011). ArticleCASPubMed Google Scholar
Qian, F. et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat. Genet.16, 179–183 (1997). ArticleCASPubMed Google Scholar
Grieben, M. et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol.24, 114–122 (2017). ArticleCASPubMed Google Scholar
Liu, X. et al. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife7, e33183 (2018). ArticlePubMedPubMed Central Google Scholar
Briscoe, J. & Thérond, P. P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol.14, 416 (2013). ArticlePubMedCAS Google Scholar
Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature426, 83–87 (2003). ArticleCASPubMed Google Scholar
Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet.11, 331–344 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yue, S. et al. Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. eLife3, e02555 (2014). ArticlePubMed CentralCAS Google Scholar
Schou, K. B. et al. KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling. Nat. Commun.8, 14177 (2017). ArticleCASPubMedPubMed Central Google Scholar
Scheidel, N., Kennedy, J. & Blacque, O. E. Endosome maturation factors Rabenosyn-5/VPS45 and caveolin-1 regulate ciliary membrane and polycystin-2 homeostasis. EMBO J.37, e98248 (2018). ArticlePubMedCASPubMed Central Google Scholar
Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature437, 1018–1021 (2005). ArticleCASPubMed Google Scholar
Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science317, 372–376 (2007). ArticleCASPubMed Google Scholar
Niewiadomski, P. et al. Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep.6, 168–181 (2014). ArticleCASPubMed Google Scholar
Mukhopadhyay, S. & Rohatgi, R. G-Protein-coupled receptors, Hedgehog signaling and primary cilia. Semin. Cell Dev. Biol.33, 63–72 (2014). ArticleCASPubMed Google Scholar
Bitgood, M. J. & McMahon, A. P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol.172, 126–138 (1995). ArticleCASPubMed Google Scholar
Carballo, G. B., Honorato, J. R., de Lopes, G. P. F. & Spohr, T. C. L. S. E. A highlight on Sonic hedgehog pathway. Cell Commun. Signal.16, 11 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Bijlsma, M. F. & Roelink, H. Non-cell-autonomous signaling by Shh in tumors: challenges and opportunities for therapeutic targets. Expert Opin. Ther. Targets14, 693–702 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yuan, X. et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat. Commun.7, 11024–11024 (2016). ArticleCASPubMedPubMed Central Google Scholar
Bijlsma, M. F., Damhofer, H. & Roelink, H. Hedgehog-stimulated chemotaxis is mediated by smoothened located outside the primary cilium. Sci. Signal.5, ra60 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Ho Wei, L., Arastoo, M., Georgiou, I., Manning, D. R. & Riobo-Del Galdo, N. A. Activation of the Gi protein-RHOA axis by non-canonical Hedgehog signaling is independent of primary cilia. PLOS ONE13, e0203170 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Gong, X. et al. Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science361, eaas8935 (2018). ArticlePubMedCAS Google Scholar
Qi, X., Schmiege, P., Coutavas, E., Wang, J. & Li, X. Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature560, 128–132 (2018). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Y. et al. Structural basis for cholesterol transport-like activity of the hedgehog receptor Patched. Cell175, 1352–1364 (2018). ArticleCASPubMedPubMed Central Google Scholar
Dorn, K. V., Hughes, C. E. & Rohatgi, R. A. Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev. Cell23, 823–835 (2012). ArticleCASPubMedPubMed Central Google Scholar
Singh, J., Wen, X. & Scales, S. J. The orphan G protein-coupled receptor Gpr175 (Tpra40) enhances Hedgehog signaling by modulating cAMP levels. J. Biol. Chem.290, 29663–29675 (2015). ArticleCASPubMedPubMed Central Google Scholar
Haycraft, C. J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLOS Genet.1, e53 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature391, 493–496 (1998). ArticleCASPubMed Google Scholar
Tempe, D., Casas, M., Karaz, S., Blanchet-Tournier, M. F. & Concordet, J. P. Multisite protein kinase A and glycogen synthase kinase 3beta phosphorylation leads to Gli3 ubiquitination by SCFbetaTrCP. Mol. Cell. Biol.26, 4316–4326 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pan, Y. & Wang, B. A novel protein-processing domain in Gli2 and Gli3 differentially blocks complete protein degradation by the proteasome. J. Biol. Chem.282, 10846–10852 (2007). ArticleCASPubMed Google Scholar
Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell100, 423–434 (2000). ArticleCASPubMed Google Scholar
Mukhopadhyay, S. et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell152, 210–223 (2013). ArticleCASPubMed Google Scholar
Humke, E. W., Dorn, K. V., Milenkovic, L., Scott, M. P. & Rohatgi, R. The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev.24, 670–682 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tuson, M., He, M. & Anderson, K. V. Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development138, 4921–4930 (2011). ArticleCASPubMedPubMed Central Google Scholar
Svard, J. et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell10, 187–197 (2006). ArticlePubMedCAS Google Scholar
Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science277, 1109–1113 (1997). ArticleCASPubMed Google Scholar
Norman, R. X. et al. Tubby-like protein 3 (TULP3) regulates patterning in the mouse embryo through inhibition of Hedgehog signaling. Hum. Mol. Genet.18, 1740–1754 (2009). ArticleCASPubMedPubMed Central Google Scholar
Patterson, V. L. et al. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Hum. Mol. Genet.18, 1719–1739 (2009). ArticleCASPubMedPubMed Central Google Scholar
Qin, J., Lin, Y., Norman, R. X., Ko, H. W. & Eggenschwiler, J. T. Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc. Natl Acad. Sci. USA108, 1456–1461 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ocbina, P. J. R., Eggenschwiler, J. T., Moskowitz, I. & Anderson, K. V. Complex interactions between genes controlling trafficking in primary cilia. Nat. Genet.43, 547–553 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hwang, S. H. & Mukhopadhyay, S. G-Protein-coupled receptors and localized signaling in the primary cilium during ventral neural tube patterning. Birth Defects Res. A Clin. Mol. Teratol103, 12–19 (2015). ArticleCAS Google Scholar
Pusapati, G. V. et al. G protein-coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog. Sci. Signal.11, eaao5749 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Hwang, S. H. et al. The G protein-coupled receptor Gpr161 regulates forelimb formation, limb patterning and skeletal morphogenesis in a primary cilium-dependent manner. Development145, dev154054 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Shimada, I. S. et al. Basal suppression of the Sonic Hedgehog pathway by the G-protein-coupled receptor Gpr161 restricts medulloblastoma pathogenesis. Cell Rep.22, 1169–1184 (2018). ArticleCASPubMedPubMed Central Google Scholar
He, M. et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol.16, 663–672 (2014). ArticleCASPubMedPubMed Central Google Scholar
Liem, K. F. Jr., He, M., Ocbina, P. J. & Anderson, K. V. Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc. Natl Acad. Sci. USA106, 13377–13382 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pal, K. et al. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J. Cell Biol.212, 861–875 (2016). ArticleCASPubMedPubMed Central Google Scholar
Garcia-Gonzalo, F. R. et al. Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev. Cell34, 400–409 (2015). ArticleCASPubMedPubMed Central Google Scholar
Chavez, M. et al. Modulation of ciliary phosphoinositide content regulates trafficking and Sonic Hedgehog signaling output. Dev. Cell34, 338–350 (2015). ArticleCASPubMed Google Scholar
Wong, W. & Scott, J. D. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol.5, 959–970 (2004). ArticleCASPubMed Google Scholar
Choi, Y. H. et al. Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proc. Natl Acad. Sci. USA108, 10679–10684 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bishop, G. A., Berbari, N. F., Lewis, J. & Mykytyn, K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J. Comp. Neurol.505, 562–571 (2007). ArticlePubMed Google Scholar
Vuolo, L., Herrera, A., Torroba, B., Menendez, A. & Pons, S. Ciliary adenylyl cyclases control the Hedgehog pathway. J. Cell Sci.128, 2928–2937 (2015). ArticleCASPubMed Google Scholar
Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol.63, 1256–1272 (2003). ArticleCASPubMed Google Scholar
Pandy-Szekeres, G. et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res.46, D440–D446 (2018). ArticleCASPubMed Google Scholar
Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov.16, 829–842 (2017). ArticleCASPubMedPubMed Central Google Scholar
Tabibian, J. H., Masyuk, A. I., Masyuk, T. V., O’Hara, S. P. & LaRusso, N. F. Physiology of cholangiocytes. Compr. Physiol.3, 541–565 (2013). PubMed Google Scholar
Masyuk, A. I. et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol.295, G725–G734 (2008). ArticleCASPubMedPubMed Central Google Scholar
Masyuk, T. V., Masyuk, A. I. & LaRusso, N. F. TGR5 in the cholangiociliopathies. Dig. Dis.33, 420–425 (2015). ArticlePubMed Google Scholar
Keitel, V., Ullmer, C. & Haussinger, D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol. Chem.391, 785–789 (2010). ArticleCASPubMed Google Scholar
Masyuk, A. I. et al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am. J. Physiol. Gastrointest. Liver Physiol.304, G1013–G1024 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cramer, M. T. & Guay-Woodford, L. M. Cystic kidney disease: a primer. Adv. Chronic Kidney Dis.22, 297–305 (2015). ArticlePubMed Google Scholar
Jin, X. et al. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell. Mol. Life Sci.71, 2165–2178 (2014). ArticleCASPubMed Google Scholar
Upadhyay, V. S. et al. Roles of dopamine receptor on chemosensory and mechanosensory primary cilia in renal epithelial cells. Front. Physiol.5, 72 (2014). ArticlePubMedPubMed Central Google Scholar
Raychowdhury, M. K. et al. Vasopressin receptor-mediated functional signaling pathway in primary cilia of renal epithelial cells. Am. J. Physiol. Renal Physiol.296, F87–F97 (2009). ArticleCASPubMed Google Scholar
Torres, V. E. et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N. Engl. J. Med.377, 1930–1942 (2017). ArticleCASPubMed Google Scholar
Wang, C. Y., Tsai, H. L., Syu, J. S., Chen, T. Y. & Su, M. T. Primary cilium-regulated EG-VEGF signaling facilitates trophoblast invasion. J. Cell. Physiol.232, 1467–1477 (2017). ArticleCASPubMed Google Scholar
Green, J. A. et al. Recruitment of β-arrestin into neuronal cilia modulates somatostatin receptor subtype 3 ciliary localization. Mol. Cell. Biol.36, 223–235 (2016). CASPubMed Google Scholar
Domire, J. S. et al. Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell. Mol. Life Sci.68, 2951–2960 (2011). ArticleCASPubMed Google Scholar
Sun, X. et al. Tubby is required for trafficking G protein-coupled receptors to neuronal cilia. Cilia1, 21 (2012). CASPubMedPubMed Central Google Scholar
Marin, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci.13, 107–120 (2012). ArticleCASPubMed Google Scholar
Ye, F., Nager, A. R. & Nachury, M. V. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J. Cell Biol.217, 1847–1868 (2018). ArticleCASPubMedPubMed Central Google Scholar
Einstein, E. B. et al. Somatostatin signaling in neuronal cilia is critical for object recognition memory. J. Neurosci.30, 4306–4314 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z., Phan, T. & Storm, D. R. The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J. Neurosci.31, 5557–5561 (2011). ArticleCASPubMedPubMed Central Google Scholar
Berbari, N. F. et al. Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc. Natl Acad. Sci. USA110, 7796–7801 (2013). ArticleCASPubMedPubMed Central Google Scholar
Davenport, J. R. et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol.17, 1586–1594 (2007). ArticleCASPubMedPubMed Central Google Scholar
Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med.348, 1085–1095 (2003). ArticleCASPubMed Google Scholar
Siljee, J. E. et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet.50, 180–185 (2018). ArticleCASPubMedPubMed Central Google Scholar
Loh, K., Herzog, H. & Shi, Y. C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab.26, 125–135 (2015). ArticleCASPubMed Google Scholar
Marion, S., Oakley, R. H., Kim, K. M., Caron, M. G. & Barak, L. S. A β-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors. J. Biol. Chem.281, 2932–2938 (2006). ArticleCASPubMed Google Scholar
Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol.13, 767 (2012). ArticleCASPubMed Google Scholar
MacDonald, B. T. & He, X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb. Perspect. Biol.4, a007880 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Sineva, G. S. & Pospelov, V. A. in International Review of Cell and Molecular Biology Vol. 312 (ed. Jeon, K. W.) 53–78 (Academic Press, 2014).
Kim, W., Kim, M. & Jho, E. H. Wnt/β-catenin signalling: from plasma membrane to nucleus. Biochem. J.450, 9–21 (2013). ArticleCASPubMed Google Scholar
Green, J., Nusse, R. & van Amerongen, R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb. Perspect. Biol.6, a009175 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Yang, Y. & Mlodzik, M. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu. Rev. Cell Dev. Biol.31, 623–646 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Nishita, M. et al. Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating Dishevelled polymerization. Mol. Cell. Biol.30, 3610–3619 (2010). ArticleCASPubMedPubMed Central Google Scholar
Witte, F. et al. Negative regulation of Wnt signaling mediated by CK1-phosphorylated Dishevelled via Ror2. FASEB J.24, 2417–2426 (2010). ArticleCASPubMed Google Scholar
Corbit, K. C. et al. Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol.10, 70–76 (2008). ArticleCASPubMed Google Scholar
Chen, Y. et al. Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of Smoothened. PLOS Biol.9, e1001083 (2011). ArticleCASPubMedPubMed Central Google Scholar
Veland, I. R. et al. Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration. PLOS ONE8, e60193 (2013). ArticleCASPubMedPubMed Central Google Scholar
Marion, V. et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc. Natl Acad. Sci. USA106, 1820–1825 (2009). ArticleCASPubMedPubMed Central Google Scholar
Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet.37, 537–543 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lienkamp, S. et al. Inversin relays Frizzled-8 signals to promote proximal pronephros development. Proc. Natl Acad. Sci. USA107, 20388–20393 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ocbina, P. J. R., Tuson, M. & Anderson, K. V. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLOS ONE4, e6839 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Kim, M. et al. KIF3A binds to β-arrestin for suppressing Wnt/β-catenin signalling independently of primary cilia in lung cancer. Sci. Rep.6, 32770 (2016). ArticleCASPubMedPubMed Central Google Scholar
Vuong, L. T., Mukhopadhyay, B. & Choi, K.-W. Kinesin-II recruits Armadillo and Dishevelled for Wingless signaling in Drosophila. Development141, 3222–3232 (2014). ArticleCASPubMed Google Scholar
Huang, P. & Schier, A. F. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development136, 3089–3098 (2009). ArticleCASPubMedPubMed Central Google Scholar
Oh, E. C. & Katsanis, N. Context-dependent regulation of Wnt signaling through the primary cilium. J. Am. Soc. Nephrol.24, 10–18 (2013). ArticleCASPubMed Google Scholar
Lancaster, M. A. et al. Impaired Wnt–β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med.15, 1046 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lancaster, M. A., Schroth, J. & Gleeson, J. G. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat. Cell Biol.13, 700 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Lancaster, M. A. et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat. Med.17, 726 (2011). ArticleCASPubMedPubMed Central Google Scholar
Abdelhamed, Z. A. et al. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. Dis. Model. Mech.8, 527–541 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bergmann, C. et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am. J. Hum. Genet.82, 959–970 (2008). ArticleCASPubMedPubMed Central Google Scholar
Burcklé, C. et al. Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum. Mol. Genet.20, 2611–2627 (2011). ArticlePubMedCAS Google Scholar
Mahuzier, A. et al. Dishevelled stabilization by the ciliopathy protein Rpgrip1l is essential for planar cell polarity. J. Cell Biol.198, 927–940 (2012). ArticleCASPubMedPubMed Central Google Scholar
Patnaik, S. R. et al. RPGR protein complex regulates proteasome activity and mediates store-operated calcium entry. Oncotarget9, 23183–23197 (2018). PubMedPubMed Central Google Scholar
Borgal, L. et al. The ciliary protein nephrocystin-4 translocates the canonical Wnt regulator Jade-1 to the nucleus to negatively regulate β-catenin signaling. J. Biol. Chem.287, 25370–25380 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chitalia, V. C. et al. Jade-1 inhibits Wnt signaling by ubiquitinating β-catenin and mediates Wnt pathway inhibition by pVHL. Nat. Cell Biol.10, 1208–1216 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gerhardt, C. et al. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. J. Cell Biol.210, 1027 (2015). ArticlePubMed CentralCAS Google Scholar
Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet.39, 1350–1360 (2007). ArticleCASPubMed Google Scholar
Gerhardt, C., Leu, T., Lier, J. M. & Rüther, U. The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia5, 14 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, Y. P. et al. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J. Clin. Invest.124, 2059–2070 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hua, K. & Ferland, R. J. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell. Mol. Life Sci.75, 1521–1540 (2018). ArticleCASPubMedPubMed Central Google Scholar
Crudden, C. et al. in International Review of Cell and Molecular Biology Vol. 339. (ed. Shukla, A. K.) 1–40 (Academic Press, 2018).
Christensen, S. T., Clement, C. A., Satir, P. & Pedersen, L. B. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J. Pathol.226, 172–184 (2012). ArticleCASPubMed Google Scholar
Christensen, S. T., Morthorst, S. K., Mogensen, J. B. & Pedersen, L. B. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor beta (TGF-β) signaling. Cold Spring Harb. Perspect. Biol.9, a028167 (2017). ArticlePubMedCASPubMed Central Google Scholar
Danilov, A. I. et al. Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia57, 136–152 (2009). ArticlePubMed Google Scholar
Martin, L. et al. Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia. Hum. Mol. Genet.27, 1–13 (2018). ArticleCASPubMed Google Scholar
Leitch, C. C. & Zaghloul, N. A. BBS4 is necessary for ciliary localization of TrkB receptor and activation by BDNF. PLOS ONE9, e98687 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Teilmann, S. C. & Christensen, S. T. Localization of the angiopoietin receptors Tie-1 and Tie-2 on the primary cilia in the female reproductive organs. Cell Biol. Int.29, 340–346 (2005). ArticleCASPubMed Google Scholar
Kunova Bosakova, M. et al. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum. Mol. Genet.27, 1093–1105 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Zhu, D., Shi, S., Wang, H. & Liao, K. Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J. Cell Sci.122, 2760–2768 (2009). ArticleCASPubMed Google Scholar
Dalbay, M. T., Thorpe, S. D., Connelly, J. T., Chapple, J. P. & Knight, M. M. Adipogenic differentiation of hMSCs is mediated by recruitment of IGF-1r onto the primary cilium associated with cilia elongation. Stem Cells33, 1952–1961 (2015). ArticleCASPubMedPubMed Central Google Scholar
Yeh, C. et al. IGF-1 activates a cilium-localized non-canonical Gβγ signaling pathway that regulates cell cycle progression. Dev. Cell26, 358–368 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. Hsp90α forms a stable complex at the cilium neck for the interaction of signalling molecules in IGF-1 receptor signalling. J. Cell Sci.128, 100–108 (2015). ArticleCASPubMed Google Scholar
Gerdes, J. M. et al. Ciliary dysfunction impairs beta-cell insulin secretion and promotes development of type 2 diabetes in rodents. Nat. Commun.5, 5308 (2014). ArticleCASPubMed Google Scholar
Volta, F. & Gerdes, J. M. The role of primary cilia in obesity and diabetes. Ann. NY Acad. Sci.1391, 71–84 (2017). ArticlePubMed Google Scholar
Song, D. K., Choi, J. H. & Kim, M.-S. Primary cilia as a signaling platform for control of energy metabolism. Diabetes Metab. J.42, 117–127 (2018). ArticlePubMedPubMed Central Google Scholar
Leibiger, B. et al. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Mol. Cell7, 559–570 (2001). ArticleCASPubMed Google Scholar
Heldin, C.-H., Lennartsson, J. & Westermark, B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J. Intern. Med.283, 16–44 (2018). ArticleCASPubMed Google Scholar
Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol.15, 1861–1866 (2005). ArticleCASPubMed Google Scholar
Vestergaard, M. L., Awan, A., Warzecha, C. B., Christensen, S. T. & Andersen, C. Y. in Human Embryonic Stem Cell Protocols (ed. Turksen, K.) 123–140 (Springer, NY, 2016).
Noda, K., Kitami, M., Kitami, K., Kaku, M. & Komatsu, Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc. Natl Acad. Sci. USA113, E2589–E2597 (2016). ArticleCASPubMedPubMed Central Google Scholar
Gerhardt, C., Lier, J. M., Kuschel, S. & Rüther, U. The ciliary protein Ftm is required for ventricular wall and septal development. PLOS ONE8, e57545 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kopinke, D., Roberson, E. C. & Reiter, J. F. Ciliary Hedgehog signaling restricts injury-induced adipogenesis. Cell170, 340–351 (2017). ArticleCASPubMedPubMed Central Google Scholar
Falcón-Urrutia, P., Carrasco, C. M., Lois, P., Palma, V. & Roth, A. D. Shh signaling through the primary cilium modulates rat oligodendrocyte differentiation. PLOS ONE10, e0133567 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Nielsen, B. S. et al. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J. Cell Sci.128, 3543–3549 (2015). ArticleCASPubMed Google Scholar
Schneider, L. et al. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell. Physiol. Biochem.25, 279–292 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schneider, L. et al. The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-α in the primary cilium. J. Cell Biol.185, 163–176 (2009). ArticleCASPubMedPubMed Central Google Scholar
Clement, D. L. et al. PDGFRα signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2–ERK1/2–p90RSK and AKT signaling pathways. J. Cell Sci.126, 953–965 (2013). ArticleCASPubMedPubMed Central Google Scholar
Umberger, N. L. & Caspary, T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol. Biol. Cell26, 350–358 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
O’Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia–telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome. Nat. Genet.33, 497 (2003). ArticlePubMedCAS Google Scholar
Stiff, T., Casar Tena, T., O’Driscoll, M., Jeggo, P. A. & Philipp, M. ATR promotes cilia signalling: links to developmental impacts. Hum. Mol. Genet.25, 1574–1587 (2016). ArticleCASPubMedPubMed Central Google Scholar
Vierkotten, J., Dildrop, R., Peters, T., Wang, B. & Rüther, U. Ftm is a novel basal body protein of cilia involved in Shh signalling. Development134, 2569–2577 (2007). ArticleCASPubMed Google Scholar
Koefoed, K., Veland, I. R., Pedersen, L. B., Larsen, L. A. & Christensen, S. T. Cilia and coordination of signaling networks during heart development. Organogenesis10, 108–125 (2014). ArticlePubMed Google Scholar
Mohapatra, B. et al. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. Biochim. Biophys. Acta1833, 122–139 (2013). ArticleCASPubMed Google Scholar
Liyasova, M. S., Ma, K. & Lipkowitz, S. Molecular pathways: Cbl proteins in tumorigenesis and antitumor immunity — opportunities for cancer treatment. Clin. Cancer Res.21, 1789–1794 (2015). ArticleCASPubMed Google Scholar
Schmid, F. M. et al. IFT20 modulates ciliary PDGFRalpha signaling by regulating the stability of Cbl E3 ubiquitin ligases. J. Cell Biol.217, 151–161 (2018). ArticleCASPubMedPubMed Central Google Scholar
Szucs, Z. et al. Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications. Future Oncol.13, 93–107 (2017). ArticleCASPubMed Google Scholar
Mohapatra, B. et al. An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance. Development144, 1072–1086 (2017). ArticleCASPubMedPubMed Central Google Scholar
Bielas, S. L. et al. Mutations in the inositol polyphosphate-5-phosphatase E gene link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet.41, 1032–1036 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kisseleva, M. V., Cao, L. & Majerus, P. W. Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits Akt/protein kinase B phosphorylation and leads to apoptotic cell death. J. Biol. Chem.277, 6266–6272 (2002). ArticleCASPubMed Google Scholar
Jacoby, M. et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet.41, 1027 (2009). ArticleCASPubMed Google Scholar
Nickel, J., ten Dijke, P. & Mueller, T. D. TGF-β family co-receptor function and signaling. Acta Biochim. Biophys. Sin.50, 12–36 (2018). ArticleCASPubMed Google Scholar
Bakkebø, M. et al. SARA is dispensable for functional TGF-β signaling. FEBS Lett.586, 3367–3372 (2012). ArticlePubMedCAS Google Scholar
Clement, C. A. et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep.3, 1806–1814 (2013). ArticleCASPubMed Google Scholar
Xie, Y.-F. et al. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone93, 22–32 (2016). ArticleCASPubMed Google Scholar
Labour, M.-N., Riffault, M., Christensen, S. T. & Hoey, D. A. TGFβ1 – induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner. Sci. Rep.6, 35542 (2016). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. et al. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Acta Biomater.57, 487–497 (2017). ArticleCASPubMedPubMed Central Google Scholar
Gencer, S. et al. TGF-β receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis. Sci. Signal.10, eaam7464 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Koefoed, K. et al. The E3 ubiquitin ligase SMURF1 regulates cell-fate specification and outflow tract septation during mammalian heart development. Sci. Rep.8, 9542 (2018). ArticleCASPubMedPubMed Central Google Scholar
Arrighi, N. et al. The primary cilium is necessary for the differentiation and the maintenance of human adipose progenitors into myofibroblasts. Sci. Rep.7, 15248 (2017). ArticleCASPubMedPubMed Central Google Scholar
Goetz & Jacky, G. et al. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep.6, 799–808 (2014). ArticleCASPubMed Google Scholar
Kallakuri, S. et al. Endothelial cilia are essential for developmental vascular integrity in zebrafish. J. Am. Soc. Nephrol.26, 864–875 (2015). ArticleCASPubMed Google Scholar
Hierck, B. P. et al. Primary cilia sensitize endothelial cells for fluid shear stress. Dev. Dyn.237, 725–735 (2008). ArticleCASPubMed Google Scholar
Egorova, A. D. et al. Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ. Res.108, 1093–1101 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vion, A.-C. et al. Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J. Cell Biol.217, 1651–1665 (2018). ArticleCASPubMedPubMed Central Google Scholar
Kawasaki, M. et al. TGF-β suppresses Ift88 expression in chondrocytic ATDC5 cells. J. Cell. Physiol.230, 2788–2795 (2015). ArticleCASPubMed Google Scholar
Ehnert, S. et al. TGF-β1 impairs mechanosensation of human osteoblasts via HDAC6-mediated shortening and distortion of primary cilia. J. Mol. Med.95, 653–663 (2017). ArticleCASPubMed Google Scholar
Han, S. J. et al. Deficiency of primary cilia in kidney epithelial cells induces epithelial to mesenchymal transition. Biochem. Biophys. Res. Commun.496, 450–454 (2018). ArticleCASPubMed Google Scholar
Westlake, C. J. et al. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc. Natl Acad. Sci. USA108, 2759–2764 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mitchell, H., Choudhury, A., Pagano, R. E. & Leof, E. B. Ligand-dependent and -independent transforming growth factor-β receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol. Biol. Cell15, 4166–4178 (2004). ArticleCASPubMedPubMed Central Google Scholar
Monnich, M. et al. CEP128 localizes to the subdistal appendages of the mother centriole and regulates TGF-β/BMP signaling at the primary cilium. Cell Rep.22, 2584–2592 (2018). ArticleCASPubMed Google Scholar
Miyazawa, K. & Miyazono, K. Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harb. Perspect. Biol.9, a022095 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Rosengren, T., Larsen, L. J., Pedersen, L. B., Christensen, S. T. & Møller, L. B. TSC1 and TSC2 regulate cilia length and canonical Hedgehog signaling via different mechanisms. Cell. Mol. Life Sci.75, 2663–2680 (2018). ArticleCASPubMedPubMed Central Google Scholar
Pedersen, L. B., Mogensen, J. B. & Christensen, S. T. Endocytic control of cellular signaling at the primary cilium. Trends Biochem. Sci.41, 784–797 (2016). ArticleCASPubMed Google Scholar
Lee, K. H. et al. Identification of a novel Wnt5a-CK1varepsilon-Dvl2-Plk1-mediated primary cilia disassembly pathway. EMBO J.31, 3104–3117 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yao, G. et al. Disruption of polycystin-L causes hippocampal and thalamocortical hyperexcitability. Hum. Mol. Genet.25, 448–458 (2016). ArticleCASPubMed Google Scholar
Abdul-Majeed, S. & Nauli, S. M. Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension58, 325–331 (2011). ArticleCASPubMed Google Scholar
Koemeter-Cox, A. I. et al. Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc. Natl Acad. Sci. USA111, 10335–10340 (2014). ArticleCASPubMedPubMed Central Google Scholar
Berbari, N. F., Johnson, A. D., Lewis, J. S., Askwith, C. C. & Mykytyn, K. Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol. Biol. Cell19, 1540–1547 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jiang, Y., Li, Y. R., Tian, H., Ma, M. & Matsunami, H. Muscarinic acetylcholine receptor M3 modulates odorant receptor activity via inhibition of β-arrestin-2 recruitment. Nat. Commun.6, 6448 (2015). ArticleCASPubMed Google Scholar
Zheng, L. et al. Ciliary parathyroid hormone signaling activates transforming growth factor-beta to maintain intervertebral disc homeostasis during aging. Bone Res.6, 21 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Omori, Y. et al. Identification of G protein-coupled receptors (GPCRs) in primary cilia and their possible involvement in body weight control. PLOS ONE10, e0128422 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Jin, D. et al. Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport. Nat. Cell Biol.16, 841–851 (2014). ArticleCASPubMedPubMed Central Google Scholar
Brailov, I. et al. Localization of 5-HT6 receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res.872, 271–275 (2000). ArticleCASPubMed Google Scholar
Handel, M. et al. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience89, 909–926 (1999). ArticleCASPubMed Google Scholar
Szumska, J. et al. Trace amine-associated receptor 1 localization at the apical plasma membrane domain of fisher rat thyroid epithelial cells is confined to cilia. Eur. Thyroid J.4, 30–41 (2015). ArticleCASPubMedPubMed Central Google Scholar