The complexity of p53 stabilization and activation (original) (raw)
Kops GJ, Weaver BA and Clevand DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer10: 773–785. ArticleCAS Google Scholar
Oren M (2001–2002) The p53 saga: the good, the bad, and the dead. Harvey Lect.97: 57–82. CASPubMed Google Scholar
Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T, Gebbia N and TP53-CRC Collaborative Study Group (2005) The p53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J. Clin. Oncol.30: 7518–7528. ArticleCAS Google Scholar
Steele RJ and Lane DP (2005) p53 in cancer: a paradigm for modern management of cancer. Surgeon3: 197–205. ArticleCASPubMed Google Scholar
Steele RJ, Thompson AM, Hall PA and Lane DP (1998) The p53 tumour suppressor gene. Br. J. Surg.11: 1460–1467. Google Scholar
Stark GR and Taylor WR (2004) Analysing the G2/M checkpoint. Methods Mol. Biol.280: 51–82. CASPubMed Google Scholar
Tang W, Willers H and Powell SN (1999) p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in γ-irradiated mouse fibroblasts. Cancer Res.59: 2562–2565. CASPubMed Google Scholar
Achanta G and Huang P (2004) Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species – generating agents. Cancer Res.64: 6233–6239. ArticleCASPubMed Google Scholar
Navaraj A, Mori T and El- Diery WS (2005) Cooperation between BRCA1 and p53 in repair of cyclobutane pyrimidine dimers. Cancer Biol. Ther.12: 1409–1414. Article Google Scholar
Lakin ND and Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene18: 7644–7655. ArticleCASPubMed Google Scholar
Harris SL and Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene24: 2899–2908. ArticleCASPubMed Google Scholar
Maltzman W and Czyzyk L (1984) UV irradiation stimulates level of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol.4: 1689–1694. CASPubMedPubMed Central Google Scholar
Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res.51: 6304–6311. CASPubMed Google Scholar
Hammond EM, Denko NC, Dorie MJ, Abraham RT and Giaccia AJ (2002) Hypoxia links ATR and p53 through replication arrest. Mol. Cell. Biol.22: 1834–1843. ArticleCASPubMedPubMed Central Google Scholar
Suzuki K, Yokoyama S, Waseda S, Kodama S and Watanabe M (2003) Delayed reactivation of p53 in the progeny of cells surviving ionizing radiation. Cancer Res.63: 936–941. CASPubMed Google Scholar
Jones KR, Elmore LW, Jackson-Cook C, Demasters G, Povirk LF, Holt SE and Gewirtz DA (2005) p53-dependent accelerated senescence induced by ionizing radiation in breast tumour cells. Int. J. Radiat. Biol.81: 445–458. ArticleCASPubMed Google Scholar
Ruggero D and Pandolfi PP (2003) Does the ribosome translate cancer? Nat. Rev. Cancer3: 179–192. ArticleCASPubMed Google Scholar
Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C and DePinho RA (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell92: 713–723. ArticleCASPubMed Google Scholar
Zhang H, Somasundaram K, Peng Y, Tian H, Zhang H, Bi D, Weber BL and El-Deiry WS (1998) BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene16: 1713–1721. ArticleCASPubMed Google Scholar
Linke SP, Clarkin KC, Di Leonardo A, Tsou A and Wahl GM (1996) A reversible p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev.10: 934–947. ArticleCASPubMed Google Scholar
Milyavsky M, Mimran A, Senderovich S, Zurer I, Erez N, Shats I, Goldfinger N, Cohen I and Rotter V (2001) Activation of p53 protein by telomeric (TTAGGG) in repeats. Nucleic Acids Res.29: 5207–5215. ArticleCASPubMedPubMed Central Google Scholar
Braithwaite AW, Royds JA and Jackson P (2005) The p53 story: layers of complexity. Carcinogenesis26: 1161–1169. ArticleCASPubMed Google Scholar
Banin S, Moyal L, Shieh S, Taya L, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y and Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science.281: 1674–1677. ArticleCASPubMed Google Scholar
Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB and Siliciano JD (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science281: 1677–1679. ArticleCASPubMed Google Scholar
Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabrielli B, Chan D, Lees-Miller SP and Lavin MF (1998) ATM associates with and phosphorylates p53: mapping the region of interaction. Nat. Genet.20: 398–400. ArticleCASPubMed Google Scholar
Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E and Anderson CW (2002) ATM mediates phosphorylation at multiple p53 sites, including Ser (46), in response to ionizing radiation. J. Biol. Chem.277: 12491–12494. ArticleCASPubMed Google Scholar
Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S, Fried VA, Minamoto T, Alarcon-Vargas D, Pincus MR, Gaarde WA, Holbrook NJ, Shiloh Y and Ronai Z (2001) Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol. Cell. Biol.21: 2743–2754. ArticleCASPubMedPubMed Central Google Scholar
Waterman MJ, Stavridi ES, Waterman JL and Halazonetis TD (1998) ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat. Genet.19: 175–178. ArticleCASPubMed Google Scholar
Selivanova G, Kawasaki T, Ryabchenko L and Wiman KG (1998) Reactivation of mutant p53: a new strategy for cancer therapy. Semin. Cancer Biol.8: 369–378. ArticleCASPubMed Google Scholar
Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS and Kelly K (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell89: 1175–1184. ArticleCASPubMed Google Scholar
Gu W and Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90: 595–606. ArticleCASPubMed Google Scholar
Sagaguchi T, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW and Appella E (1998) DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev.12: 2831–2841. Article Google Scholar
Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP and Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature406: 207–210. ArticleCASPubMed Google Scholar
Gottifredi V and Prives C (2001) p53 and PML: new partners in tumor suppression. Trends Cell Biol.11: 184–187. ArticleCASPubMed Google Scholar
Liu B, Situ Z, Wu J and Chen J (1999) Effects of hexamethylene bisacetamide on p53 protein expression of MeC-1 cell line and cell differentiation. Hua. Xi. Kou. Qiang. Yi. Xue. Za. Zhi.17: 17–19. CASPubMed Google Scholar
Espinosa JM and Emerson BM (2001) Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell8: 57–69. ArticleCASPubMed Google Scholar
Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD and Berger SL (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell8: 1243–1254. ArticleCASPubMed Google Scholar
Gu L, Zhu N, Findley HW, Woods WG and Zhou M (2004) Identification and characterization of the IKKalpha promoter: positive and negative regulation by ETS-1 and p53, respectively. J. Biol. Chem.279: 52141–52149. ArticleCASPubMed Google Scholar
Krummel KA, Lee CJ, Toledo F and Wahl GM (2005) The C-terminal lysines fine-tune p53 stress responses in a mouse model but are not required for stability control or transactivation. Proc. Natl. Acad. Sci. USA102: 10188–10193. ArticleCASPubMedPubMed Central Google Scholar
Li M, Luo J, Brooks CL and Gu W (2002) Acetylation of p53 inhibits its ubiguition by Mdm2. J. Biol. Chem.52: 50607–50611. Article Google Scholar
Apella E and Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem.268: 2764–2772. Article Google Scholar
Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace Jr AJ, Appella E and Anderson CW (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem.278: 37536–37544. ArticleCASPubMed Google Scholar
Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S, Ronai Z, Blandino G, Schneider C and Del Sal G (2002) The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature419: 853–857. ArticleCASPubMed Google Scholar
Mantovani F, Gostissa M, Collavin L and Del Sal G (2004) KeePin' the p53 family in good shape. Cell Cycle3: 905–911. ArticleCASPubMed Google Scholar
Blattner C, Tobiasch E, Litfen M, Rahmsdorf HJ and Herrlich P (1999) DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene18: 1723–1732. ArticleCASPubMed Google Scholar
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N and Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science303: 844–848. ArticleCASPubMed Google Scholar
Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC and Vassilev LT (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J. Biol. Chem.279: 53015–53022. ArticleCASPubMed Google Scholar
Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R and Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase promotes p53 degradation. Cell112: 779–791. ArticleCASPubMed Google Scholar
Dornan D, Eckert M, Wallace M, Shimizu H, Ramsay E, Hupp TR and Ball KL (2004) Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53. Mol. Cell. Biol.24: 10083–10098. ArticleCASPubMedPubMed Central Google Scholar
Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J, Liu LF, Lutzker S, Saleem A and Rubin EH (2004) Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquinates p53. J. Biol. Chem.279: 36440–36444. ArticleCASPubMed Google Scholar
Jones SN, Roe AE, Donehower LA and Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature378: 206–208. ArticleCASPubMed Google Scholar
Fang S, Jensen JP, Ludwig RL, Vousden KH and Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem.275: 8945–8951. ArticleCASPubMed Google Scholar
Alarcon-Vargas D and Ronai Z (2002) p53–Mdm2 – the affair that never ends. Carcinogenesis23: 541–547. ArticleCASPubMed Google Scholar
Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y and Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl. Acad. Sci. USA.96: 14973–14977. ArticleCASPubMedPubMed Central Google Scholar
Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E and Oren M (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev.15: 1067–1077. ArticleCASPubMedPubMed Central Google Scholar
Wang Y, Wiltshire T, Wang Y, Mikell C, Burks J, Cunningham C, Van Laar ES, Waters SJ, Reed E and Wang W (2004) ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J. Biol. Chem.279: 39584–39592. ArticleCASPubMed Google Scholar
Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP, Ramirez-Solis R, Sands AT and Zhang N (2002) MDMX is a negative regulator of p53 activity in vivo. Cancer Res.62: 3221–3225. CASPubMed Google Scholar
Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A and Ohtsubo M (1999) MDM2 interacts with MDMX through their RING finger domains. FEBS Lett.447: 5–9. ArticleCASPubMed Google Scholar
Stad R, Little NA, Xirodimas DP, Frenk R, van der Eb AJ, Lane DP, Saville MK and Jochemsen AG (2001) Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep.2: 1029–1034. ArticleCASPubMedPubMed Central Google Scholar
Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG, Parant J, Lozano G and Yuan ZM (2002) Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J. Biol. Chem.277: 19251–19254. ArticleCASPubMed Google Scholar
Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M, Biton S, Teunisse AF, Lehmann WD, Jochemsen AG and Shiloh Y (2005) Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc. Natl. Acad. Sci. USA.102: 5056–5061. ArticleCASPubMedPubMed Central Google Scholar
Chen L, Gilkes DM, Pan Y, Lane WS and Chen J (2005) ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J.24: 3411–3422. ArticleCASPubMedPubMed Central Google Scholar
Okamoto K, Kashima K, Pereg Y, Ishida M, Yamazaki S, Nota A, Teunisse A, Migliorini D, Kitabayashi I, Marine JC, Prives C, Shiloh Y, Jochemsen AG and Taya Y (2005) DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation. Mol. Cell. Biol.25: 9608–9620. ArticleCASPubMedPubMed Central Google Scholar
Meulmeester E, Pereg Y, Shiloh Y and Jochemsen AG (2005) ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favour of p53 activation. Cell Cycle4: 1166–1170. ArticleCASPubMed Google Scholar
Laiho M and Latonen L (2003) Cell cycle control, DNA damage checkpoints and cancer. Ann. Med.6: 391–397. ArticleCAS Google Scholar
Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K and Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem.73: 39–85. ArticleCASPubMed Google Scholar
Lavin MF and Shiloh Y (1997) Ataxia-telangiectasia: a multifaceted genetic disorder associated with defective signal transduction. Curr. Opin. Immunol.8: 459–464. Article Google Scholar
Lobrich M and Jeggo PA (2005) The two edges of the ATM sword: co-operation between repair and checkpoint functions. Radiother. Oncol.76: 112–118. ArticlePubMed Google Scholar
Fuchs B, O'Connor D, Fallis L, Scheidtmann KH and Lu X (1995) p53 phosphorylation mutants retain transcription activity. Oncogene10: 789–793. CASPubMed Google Scholar
Ito T, Kaneko K, Makino R, Ito H, Konishi K, Kurahashi T, Kitahara T and Mitamura K (2001) Prognostic value of p53 mutations in patients with locally advanced esophageal carcinoma treated with definitive chemoradiotherapy. J. Gastroenterol.36: 303–311. ArticleCASPubMed Google Scholar
Khanna KK and Lavin MF (1993) Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene8: 307–312. Google Scholar
Unger T, Juven-Gershon T, Moallem E, Berger M, Vogt Sionov R, Lozano G, Oren M and Haupt Y (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J.18: 1805–1814. ArticleCASPubMedPubMed Central Google Scholar
Jabbur JR, Huang P and Zhang W (2001) DNA damage-induced phosphorylation of p53 at serine 20 correlates with p21 and Mdm-2 induction in vivo. Oncogene19: 6203–6208. ArticleCAS Google Scholar
Yamauchi M, Suzuki K, Kodama S and Watanabe M (2004) Stabilization of alanine substituted p53 protein at Ser15, Thr18, and Ser20 in response to ionizing radiation. Biochem. Biophys. Res. Commun.323: 906–911. ArticleCASPubMed Google Scholar
Hirao A, Cheung A, Duncan G, Girard PM, Elia AJ, Wakeham A, Okada H, Sarkissian T, Wong JA, Sakai T, De Stanchina E, Bristow RG, Suda T, Lowe SW, Jeggo PA, Elledge SJ and Mak TW (2002) Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol. Cell. Biol.22: 6521–6532. ArticleCASPubMedPubMed Central Google Scholar
Jack MT, Woo RA, Hirao A, Cheung A, Mak TW and Lee PW (2002) Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc. Natl. Acad. Sci. USA.99: 9825–9829. ArticleCASPubMedPubMed Central Google Scholar
Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S, Anderson CW, Appella E, Nakanishi M, Suzuki H, Nagashima K, Sawa H, Ikeda K and Motoyama N (2002) Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J.21: 5195–5205. ArticleCASPubMedPubMed Central Google Scholar
Li M, Brooks CL, Kon N and Gu W (2004) A dynamic role of HAUSP in the p53–Mdm2 pathway. Mol. Cell13: 879–886. ArticleCASPubMed Google Scholar
Cummins JM and Vogelstein B (2004) HAUSP is required for p53 destabilization. Cell Cycle3: 689–692. ArticleCASPubMed Google Scholar
Asher G, Lotem J, Sachs L, Kahana C and Shaul Y (2002) Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQ01. Proc. Natl. Acad. Sci. USA.99: 13125–13130. ArticleCASPubMedPubMed Central Google Scholar
Asher G and Shaul Y (2005) p53 proteasomal degradation: poly-ubiquitination is not the whole story. Cell Cycle4: 1015–1018. ArticleCASPubMed Google Scholar
Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R and Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem.273: 33048–33053. ArticleCASPubMed Google Scholar
Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E and Yao TP (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J.21: 6236–6245. ArticleCASPubMedPubMed Central Google Scholar
Demonacos C, Krstic-Demonacos M, Smith L, Xu D, O'Connor DP, Jansson M and La Thangue NB (2004) A new effector pathway links ATM kinase with the DNA damage response. Nat. Cell. Biol.6: 968–976. ArticleCASPubMed Google Scholar
Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R, Wang XW, Yokota J, Riabowol K and Harris CC (2001) DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc. Natl. Acad. Sci. USA.98: 9671–9676. ArticleCASPubMedPubMed Central Google Scholar
Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA and Reinberg D (2004) Regulation of p53 activity through lysine methylation. Nature432: 353–360. ArticleCASPubMed Google Scholar
Rubbi CP and Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J.22: 6068–6077. ArticleCASPubMedPubMed Central Google Scholar
Colombo E, Marine JC, Danovi D, Falini B and Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat. Cell Biol.4: 529–533. ArticleCASPubMed Google Scholar
Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D and Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell5: 465–475. ArticleCASPubMed Google Scholar
Wang Y, Li J, Boder RN, Kraker A, Lawrence T, Leopold WR and Sun Y (2001) Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res.61: 8211–8217. CASPubMed Google Scholar
Di Stefano V, Blandino G, Sacchi A, Soddu S and D'Orazi G (2004) HIPK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function. Oncogene23: 5185–5192. ArticleCASPubMed Google Scholar
Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W, Zhou HM, Cheung PY, Wu Z, Ye Z, Li P, Han J and Lin SC (2004) Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J.23: 4583–4594. ArticleCASPubMedPubMed Central Google Scholar
Wesierska-Gadek J, Bugajska-Schretter A, Low-Baselli A and Grasl-Kraupp B (1999) Cleavage of poly(ADP-ribose) transferase during p53-independent apoptosis in rat liver after treatment with _N_-nitrosomorpholine and cyproterone acetate. Mol. Carcinog.24: 263–275. ArticleCASPubMed Google Scholar
Wesierska-Gadek J and Schmid G (2001) Poly (ADP-ribose) polymerase-1 regulates the stability of the wild-type p53 protein. Cell. Mol. Biol. Lett.6: 117–140. CASPubMed Google Scholar
Wesierska-Gadek J and Schmid G (2000) Overexpressed poly (ADP-ribose) polymerase delays the release of rat cells from p53-mediated G(1) checkpoint. J. Cell. Biochem.80: 85–103. ArticleCASPubMed Google Scholar
Wieler S, Gagne JP, Vaziri H, Poirier GG and Benchimol S (2003) Poly (ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J. Biol. Chem.278: 18914–18921. ArticleCASPubMed Google Scholar
Moumen A, Masterson P, O'Connor MJ and Jackson SP (2005) hnRNPK: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell123: 1065–1078. ArticleCASPubMed Google Scholar
Takagi M, Absalon MJ, McLure KG and Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell123: 49–63. ArticleCASPubMed Google Scholar