Optic nerve and neuroprotection strategies (original) (raw)
Quigley HA, Addicks EM . Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 1981; 99: 137–143. CASPubMed Google Scholar
Hernandez MR, Pena JD . The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol 1997; 115: 389–395. CASPubMed Google Scholar
Quigley HA . Neuronal death in glaucoma. Prog Retin Eye Res 1999; 18: 39–57. CASPubMed Google Scholar
Drance SM . Bowman Lecture. Glaucoma—changing concepts. Eye 1992; 6: 337–345. PubMed Google Scholar
Evans DW, Harris A, Garrett M, Chung HS, Kagemann L . Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change. Br J Ophthalmol 1999; 83: 809–813. CASPubMedPubMed Central Google Scholar
Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359–393. PubMed Google Scholar
Biousse V, Brown MD, Newman NJ, Allen JC, Rosenfeld J, Meola G et al. De novo 14484 mitochondrial DNA mutation in monozygotic twins discordant for Leber's hereditary optic neuropathy. Neurology 1997; 49: 1136–1138. CASPubMed Google Scholar
Biousse V, Bousser MG, Schaison M . Normal pressure pseudotumor cerebri. J Neuroophthalmol 1997; 17: 279–280. CASPubMed Google Scholar
Levin LA, Gordon LK . Retinal ganglion cell disorders: types of treatement. Exp Eye Res 2002; 21: 465–484. CAS Google Scholar
Yoles E, Schwartz M . Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 1998; 116: 906–910. CASPubMed Google Scholar
Straten G, Schmeer C, Kretz A, Gerhardt E, Kugler S, Schulz JB et al. Potential synergistic protection of retinal ganglion cells from axotomy-induced apoptosis by adenoviral administration of glial cell line-derived neurotrophic factor and X-chromosome-linked inhibitor of apoptosis. Neurobiol Dis 2002; 11: 123–133. CASPubMed Google Scholar
Allcutt D, Berry M, Sievers J . A quantitative comparison of the reactions of retinal ganglion cells to optic nerve crush in neonatal and adult mice. Brain Res 1984; 318: 219–230. CASPubMed Google Scholar
Allcutt D, Berry M, Sievers J . A qualitative comparison of the reactions of retinal ganglion cell axons to optic nerve crush in neonatal and adult mice. Brain Res 1984; 318: 231–240. CASPubMed Google Scholar
Villegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ . Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol 1993; 24: 23–36. CASPubMed Google Scholar
Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ . Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 1994; 14: 4368–4374. CASPubMedPubMed Central Google Scholar
Kurimoto T, Miyoshi T, Suzuki A, Yakura T, Watanabe M, Mimura O et al. Apoptotic death of beta cells after optic nerve transection in adult cats. J Neurosci 2003; 23: 4023–4028. CASPubMedPubMed Central Google Scholar
Isenmann S, Kretz A, Cellerino A . Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res 2003; 22: 483–543. CASPubMed Google Scholar
Siliprandi R, Canella R, Carmignoto G, Schiavo N, Zanellato A, Zanoni R et al. _N_-methyl-D-aspartate-induced neurotoxicity in the adult rat retina. Vis Neurosci 1992; 8: 567–573. CASPubMed Google Scholar
Chidlow G, Osborne NN . Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Res 2003; 963: 298–306. CASPubMed Google Scholar
Vorwerk CK, Naskar R, Schuettauf F, Quinto K, Zurakowski D, Gochenauer G et al. Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest Ophthalmol Vis Sci 2000; 41: 3615–3621. CASPubMed Google Scholar
Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JP et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol 1999; 43(Suppl 1): S102–S128. PubMed Google Scholar
Sucher NJ, Lipton SA, Dreyer EB . Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res 1997; 37: 3483–3493. CASPubMed Google Scholar
Osborne NN, Larsen AK . Antigens associated with specific retinal cells are affected by ischaemia caused by raised intraocular pressure: effect of glutamate antagonists. Neurochem Int 1996; 29: 263–270. CASPubMed Google Scholar
Hartveit E, Brandstatter JH, Enz R, Wassle H . Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur J Neurosci 1995; 7: 1472–1483. CASPubMed Google Scholar
Osborne NN, Melena J, Chidlow G, Wood JP . A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma. Br J Ophthalmol 2001; 85: 1252–1259. CASPubMedPubMed Central Google Scholar
Neufeld AH, Hernandez MR, Gonzalez M . Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 1997; 115: 497–503. CASPubMed Google Scholar
Liu B, Neufeld AH . Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia 2000; 30: 178–186. CASPubMed Google Scholar
Neufeld AH, Sawada A, Becker B . Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA 1999; 96: 9944–9948. CASPubMedPubMed Central Google Scholar
Kristian T, Siesjo BK . Calcium-related damage in ischemia. Life Sci 1996; 59: 357–367. CASPubMed Google Scholar
Kroemer G . The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997; 3: 614–620. CASPubMed Google Scholar
Sadun AA, Sadun F . Leber hereditary optic neuropathy. Ophthalmology 1996; 103: 201–202. CASPubMed Google Scholar
Ugarte M, Osborne NN . Zinc in the retina. Prog Neurobiol 2001; 64: 219–249. CASPubMed Google Scholar
Biousse V . Carotid disease and the eye. Curr Opin Ophthalmol 1997; 8: 16–26. CASPubMed Google Scholar
Foster RE, Connors BW, Waxman SG . Rat optic nerve: electrophysiological, pharmacological and anatomical studies during development. Brain Res 1982; 255: 371–386. CASPubMed Google Scholar
Garthwaite G, Brown G, Batchelor AM, Goodwin DA, Garthwaite J . Mechanisms of ischaemic damage to central white matter axons: a quantitative histological analysis using rat optic nerve. Neuroscience 1999; 94: 1219–1230. CASPubMed Google Scholar
Stys PK, Waxman SG, Ransom BR . Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)–Ca2+ exchanger. J Neurosci 1992; 12: 430–439. CASPubMedPubMed Central Google Scholar
Stys PK . Protective effects of antiarrhythmic agents against anoxic injury in CNS white matter. J Cereb Blood Flow Metab 1995; 15: 425–432. CASPubMed Google Scholar
Stys PK, Lesiuk H . Correlation between electrophysiological effects of mexiletine and ischemic protection in central nervous system white matter. Neuroscience 1996; 71: 27–36. CASPubMed Google Scholar
Stys PK, Hubatsch DA, Leppanen LL . Effects of K+ channel blockers on the anoxic response of CNS myelinated axons. Neuroreport 1998; 9: 447–453. CASPubMed Google Scholar
Waxman SG, Black JA, Stys PK, Ransom BR . Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Res 1992; 574: 105–119. CASPubMed Google Scholar
Osborne NN, Chidlow G, Wood JP, Schmidt KG, Casson R, Melena J . Expectations in the treatment of retinal diseases: neuroprotection. Curr Eye Res 2001; 22: 321–332. CASPubMed Google Scholar
Orrenius S, Ankarcrona M, Nicotera P . Mechanisms of calcium-related cell death. Adv Neurol 1996; 71: 137–149 discussion 149–151. CASPubMed Google Scholar
Stys PK, Lopachin RM . Mechanisms of calcium and sodium fluxes in anoxic myelinated central nervous system axons. Neuroscience 1998; 82: 21–32. CASPubMed Google Scholar
Brown AM, Westenbroek RE, Catterall WA, Ransom BR . Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter. J Neurophysiol 2001; 85: 900–911. CASPubMed Google Scholar
Malek SA, Coderre E, Stys PK . Aberrant chloride transport contributes to anoxic/ischemic white matter injury. J Neurosci 2003; 23: 3826–3836. CASPubMedPubMed Central Google Scholar
Fern R, Waxman SG, Ransom BR . Modulation of anoxic injury in CNS white matter by adenosine and interaction between adenosine and GABA. J Neurophysiol 1994; 72: 2609–2616. CASPubMed Google Scholar
Brown AM, Wender R, Ransom BR . Ionic mechanisms of aglycemic axon injury in mammalian central white matter. J Cereb Blood Flow Metab 2001; 21: 385–395. CASPubMed Google Scholar
Fern R, Ransom BR, Waxman SG . Voltage-gated calcium channels in CNS white matter: role in anoxic injury. J Neurophysiol 1995; 74: 369–377. CASPubMed Google Scholar
Fern R, Waxman SG, Ransom BR . Endogenous GABA attenuates CNS white matter dysfunction following anoxia. J Neurosci 1995; 15: 699–708. CASPubMedPubMed Central Google Scholar
Ijzerman AP, Nagesser A, Garritsen A . The membrane stabilizing activity of beta-adrenoceptor ligands. Quantitative evaluation of the interaction of phenoxypropanolamines with the [3H] batrachotoxinin A 20-alpha-benzoate binding site on voltage-sensitive sodium channels in rat brain. Biochem Pharmacol 1987; 36: 4239–4244. CASPubMed Google Scholar
Chidlow G, Melena J, Osborne NN . Betaxolol, a beta(1)-adrenoceptor antagonist, reduces Na(+) influx into cortical synaptosomes by direct interaction with Na(+) channels: comparison with other beta-adrenoceptor antagonists. Br J Pharmacol 2000; 130: 759–766. CASPubMedPubMed Central Google Scholar
Catterall WA, Curtis BM . Molecular properties of voltage-sensitive calcium channels. Soc Gen Physiol Ser 1987; 41: 201–213. CASPubMed Google Scholar
Block F, Schwarz M . The b-wave of the electroretinogram as an index of retinal ischemia. Gen Pharmacol 1998; 30: 281–287. CASPubMed Google Scholar
Chidlow G, Schmidt KG, Wood JP, Melena J, Osborne NN . Alpha-lipoic acid protects the retina against ischemia-reperfusion. Neuropharmacology 2002; 43: 1015–1025. CASPubMed Google Scholar
Wood JP, Schmidt KG, Melena J, Chidlow G, Allmeier H, Osborne NN . The beta-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants: comparison with betaxolol. Exp Eye Res 2003; 76: 505–516. CASPubMed Google Scholar
McKinnon SJ . Glaucoma, apoptosis, and neuroprotection. Curr Opin Ophthalmol 1997; 8: 28–37. CASPubMed Google Scholar
Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC . A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997; 64: 85–96. CASPubMed Google Scholar
Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC . Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995; 61: 33–44. CASPubMed Google Scholar
Goldblum D, Mittag T . Prospects for relevant glaucoma models with retinal ganglion cell damage in the rodent eye. Vis Res 2002; 42: 471–478. PubMed Google Scholar
Grozdanic SD, Betts DM, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM . Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve. Exp Eye Res 2003; 77: 27–33. CASPubMed Google Scholar
Chauhan BC, Pan J, Archibald ML, LeVatte TL, Kelly ME, Tremblay F . Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci 2002; 43: 2969–2976. PubMed Google Scholar
Neufeld AH, Das S, Vora S, Gachie E, Kawai S, Manning PT et al. A prodrug of a selective inhibitor of inducible nitric oxide synthase is neuroprotective in the rat model of glaucoma. J Glaucoma 2002; 11: 221–225. PubMed Google Scholar
Chaudhary P, Ahmed F, Sharma SC . MK801—a neuroprotectant in rat hypertensive eyes. Brain Res 1998; 792: 154–158. CASPubMed Google Scholar
Morrison JC, Nylander KB, Lauer AK, Cepurna WO, Johnson E . Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci 1998; 39: 526–531. CASPubMed Google Scholar
Takamatsu J, Hirano A, Levy D, Henkind P . Experimental bilateral carotid artery occlusion: a study of the optic nerve in the rat. Neuropathol Appl Neurobiol 1984; 10: 423–428. CASPubMed Google Scholar
Kobayashi M, Kuroiwa T, Shimokawa R, Okeda R, Tokoro T . Nitric oxide synthase expression in ischemic rat retinas. Jpn J Ophthalmol 2000; 44: 235–244. CASPubMed Google Scholar
Stevens WD, Fortin T, Pappas BA . Retinal and optic nerve degeneration after chronic carotid ligation: time course and role of light exposure. Stroke 2002; 33: 1107–1112. PubMed Google Scholar
Osborne NN, Safa R, Nash MS . Photoreceptors are preferentially affected in the rat retina following permanent occlusion of the carotid arteries. Vis Res 1999; 39: 3995–4002. CASPubMed Google Scholar
Yip HK, So KF . Axonal regeneration of retinal ganglion cells: effect of trophic factors. Prog Retin Eye Res 2000; 19: 559–575. CASPubMed Google Scholar
Unoki K, LaVail MM . Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor. Invest Ophthalmol Vis Sci 1994; 35: 907–915. CASPubMed Google Scholar
Kurokawa T, Katai N, Shibuki H, Kuroiwa S, Kurimoto Y, Nakayama C et al. BDNF diminishes caspase-2 but not c-Jun immunoreactivity of neurons in retinal ganglion cell layer after transient ischemia. Invest Ophthalmol Vis Sci 1999; 40: 3006–3011. CASPubMed Google Scholar
Kido N, Tanihara H, Honjo M, Inatani M, Tatsuno T, Nakayama C et al. Neuroprotective effects of brain-derived neurotrophic factor in eyes with NMDA-induced neuronal death. Brain Res 2000; 884: 59–67. CASPubMed Google Scholar
Marmor MF, Dalal R . Irregular retinal and RPE damage after pressure-induced ischemia in the rabbit. Invest Ophthalmol Vis Sci 1993; 34: 2570–2575. CASPubMed Google Scholar
Chiang SK, Lam TT . Post-treatment at 12 or 18 hours with 3-aminobenzamide ameliorates retinal ischemia-reperfusion damage. Invest Ophthalmol Vis Sci 2000; 41: 3210–3214. CASPubMed Google Scholar
Buchi ER, Suivaizdis I, Fu J . Pressure-induced retinal ischemia in rats: an experimental model for quantitative study. Ophthalmologica 1991; 203: 138–147. CASPubMed Google Scholar
Shareef SR, Garcia Valenzuela E, Salierno A, Walsh J, Sharma SC . Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995; 61: 379–382. CASPubMed Google Scholar
Ueda J, Sawaguchi S, Hanyu T, Yaoeda K, Fukuchi T, Abe H et al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol 1998; 42: 337–344. CASPubMed Google Scholar
Mittag TW, Danias J, Pohorenec G, Yuan HM, Burakgazi E, Chalmers-Redman R et al. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2000; 41: 3451–3459. CASPubMed Google Scholar
Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA 2001; 98: 3398–3403. CASPubMedPubMed Central Google Scholar
Osborne NN, Block F, Sontag KH . Reduction of ocular blood flow results in glial fibrillary acidic protein (GFAP) expression in rat retinal Muller cells. Vis Neurosci 1991; 7: 637–639. CASPubMed Google Scholar
Barnett NL, Osborne NN . Prolonged bilateral carotid artery occlusion induces electrophysiological and immunohistochemical changes to the rat retina without causing histological damage. Exp Eye Res 1995; 61: 83–90. CASPubMed Google Scholar
Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994; 13: 1017–1030. CASPubMed Google Scholar
Mosinger JL, Price MT, Bai HY, Xiao H, Wozniak DF, Olney JW . Blockade of both NMDA and non-NMDA receptors is required for optimal protection against ischemic neuronal degeneration in the in vivo adult mammalian retina. Exp Neurol 1991; 113: 10–17. CASPubMed Google Scholar
Otori Y, Shimada S, Morimura H, Ishimoto I, Tohyama M, Tano Y . Expression of c-fos and c-jun mRNA following transient retinal ischemia: an approach using ligation of the retinal central artery in the rat. Surv Ophthalmol 1997; 42(Suppl 1): S96–S104. PubMed Google Scholar
Lafuente MP, Villegas Perez MP, Selles Navarro I, Mayor Torroglosa S, Miralles de Imperial J, Vidal Sanz M . Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity and duration depends on the duration of the insult. Neuroscience 2002; 109: 157–168. CASPubMed Google Scholar
Osborne NN, DeSantis L, Bae JH, Ugarte M, Wood JP, Nash MS et al. Topically applied betaxolol attenuates NMDA-induced toxicity to ganglion cells and the effects of ischaemia to the retina. Exp Eye Res 1999; 69: 331–342. CASPubMed Google Scholar
Wood JP, DeSantis L, Chao HM, Osborne NN . Topically applied betaxolol attenuates ischaemia-induced effects to the rat retina and stimulates BDNF mRNA. Exp Eye Res 2001; 72: 79–86. CASPubMed Google Scholar
Goto W, Ota T, Morikawa N, Otori Y, Hara H, Kawazu K et al. Protective effects of timolol against the neuronal damage induced by glutamate and ischemia in the rat retina. Brain Res 2002; 958: 10–19. CASPubMed Google Scholar
Taniai M, Sato E, Mizota A, Adachi-Usami E . Protective action of nipradilol against ischemia-induced retinal damage in rats. Ophthalmic Res 2002; 34: 331–337. CASPubMed Google Scholar
Donello JE, Padillo EU, Webster ML, Wheeler LA, Gil DW . alpha(2)-Adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther 2001; 296: 216–223. CASPubMed Google Scholar
Lai RK, Chun T, Hasson D, Lee S, Mehrbod F, Wheeler L . Alpha-2 adrenoceptor agonist protects retinal function after acute retinal ischemic injury in the rat. Vis Neurosci 2002; 19: 175–185. PubMed Google Scholar
Chao HM, Osborne NN . Topically applied clonidine protects the rat retina from ischaemia/reperfusion by stimulating alpha(2)-adrenoceptors and not by an action on imidazoline receptors. Brain Res 2001; 904: 126–136. CASPubMed Google Scholar
Takahashi K, Lam TT, Edward DP, Buchi ER, Tso MO . Protective effects of flunarizine on ischemic injury in the rat retina. Arch Ophthalmol 1992; 110: 862–870. CASPubMed Google Scholar
Toriu N, Akaike A, Yasuyoshi H, Zhang S, Kashii S, Honda Y et al. Lomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp Eye Res 2000; 70: 475–484. CASPubMed Google Scholar
Osborne NN, Wood JP, Cupido A, Melena J, Chidlow G . Topical flunarizine reduces IOP and protects the retina against ischemia-excitotoxicity. Invest Ophthalmol Vis Sci 2002; 43: 1456–1464. PubMed Google Scholar
Ju WK, Kim KY, Neufeld AH . Increased activity of cyclooxygenase-2 signals early neurodegenerative events in the rat retina following transient ischemia. Exp Eye Res 2003; 77: 137–145. CASPubMed Google Scholar
Lagreze WA, Muller-Velten R, Feuerstein TJ . The neuroprotective properties of gabapentin-lactam. Gr Arch Clin Exp Ophthalmol 2001; 239: 845–849. CAS Google Scholar
Zhang C, Takahashi K, Lam TT, Tso MO . Effects of basic fibroblast growth factor in retinal ischemia. Invest Ophthalmol Vis Sci 1994; 35: 3163–3168. CASPubMed Google Scholar
Siliprandi R, Canella R, Carmignoto G . Nerve growth factor promotes functional recovery of retinal ganglion cells after ischemia. Invest Ophthalmol Vis Sci 1993; 34: 3232–3245. CASPubMed Google Scholar
Yoneda S, Tanihara H, Kido N, Honda Y, Goto W, Hara H et al. Interleukin-1beta mediates ischemic injury in the rat retina. Exp Eye Res 2001; 73: 661–667. CASPubMed Google Scholar
Osborne NN, Wood JP, Melena J, Chao HM, Nash MS, Bron AJ et al. 5-Hydroxytryptamine1A agonists: potential use in glaucoma. Evidence from animal studies. Eye 2000; 14: 454–463. PubMed Google Scholar
Kim SY, Kwak JS, Shin JP, Lee SH . The protection of the retina from ischemic injury by the free radical scavenger EGb 761 and zinc in the cat retina. Ophthalmologica 1998; 212: 268–274. CASPubMed Google Scholar
Kuriyama H, Waki M, Nakagawa M, Tsuda M . Involvement of oxygen free radicals in experimental retinal ischemia and the selective vulnerability of retinal damage. Ophthalmic Res 2001; 33: 196–202. CASPubMed Google Scholar
Adachi K, Fujita Y, Morizane C, Akaike A, Ueda M, Satoh M et al. Inhibition of NMDA receptors and nitric oxide synthase reduces ischemic injury of the retina. Eur J Pharmacol 1998; 350: 53–57. CASPubMed Google Scholar
Ju WK, Kim KY, Park SJ, Park DK, Park CB, Oh SJ et al. Nitric oxide is involved in sustained and delayed cell death of rat retina following transient ischemia. Brain Res 2000; 881: 231–236. CASPubMed Google Scholar
Neufeld AH, Kawai S, Das S, Vora S, Gachie E, Connor JR et al. Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp Eye Res 2002; 75: 521–528. CASPubMed Google Scholar
Joo CK, Choi JS, Ko HW, Park KY, Sohn S, Chun MH et al. Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. Invest Ophthalmol Vis Sci 1999; 40: 713–720. CASPubMed Google Scholar
Kapin MA, Doshi R, Scatton B, DeSantis LM, Chandler ML . Neuroprotective effects of eliprodil in retinal excitotoxicity and ischemia. Invest Ophthalmol Vis Sci 1999; 40: 1177–1182. CASPubMed Google Scholar
Nash MS, Wood JP, Melena J, Osborne NN . Flupirtine ameliorates ischaemic-like death of rat retinal ganglion cells by preventing calcium influx. Brain Res 2000; 856: 236–239. CASPubMed Google Scholar
Osborne NN . Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Vis Neurosci 1999; 16: 45–52. CASPubMed Google Scholar
Lam TT, Siew E, Chu R, Tso MO . Ameliorative effect of MK-801 on retinal ischemia. J Ocul Pharmacol Ther 1997; 13: 129–137. CASPubMed Google Scholar
Seo SY, Yun BS, Ryoo IJ, Choi JS, Joo CK, Chang SY et al. Complestatin is a noncompetitive peptide antagonist of _N_-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors: secure blockade of ischemic neuronal death. J Pharmacol Exp Ther 2001; 299: 377–384. CASPubMed Google Scholar
Yoneda S, Tanaka E, Goto W, Ota T, Hara H . Topiramate reduces excitotoxic and ischemic injury in the rat retina. Brain Res 2003; 967: 257–266. CASPubMed Google Scholar
Yoles E, Wheeler LA, Schwartz M . Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci 1999; 40: 65–73. CASPubMed Google Scholar
Ahmed FA, Hegazy K, Chaudhary P, Sharma SC . Neuroprotective effect of alpha(2) agonist (brimonidine) on adult rat retinal ganglion cells after increased intraocular pressure. Brain Res 2001; 913: 133–139. CASPubMed Google Scholar
Mey J, Thanos S . Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 1993; 602: 304–317. CASPubMed Google Scholar
Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M . Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 1996; 37: 489–500. CASPubMed Google Scholar
Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, Aguayo AJ . Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 1994; 91: 1632–1636. CASPubMedPubMed Central Google Scholar
Weise J, Isenmann S, Klocker N, Kugler S, Hirsch S, Gravel C et al. Adenovirus-mediated expression of ciliary neurotrophic factor (CNTF) rescues axotomized rat retinal ganglion cells but does not support axonal regeneration in vivo. Neurobiol Dis 2000; 7: 212–223. CASPubMed Google Scholar
van Adel BA, Kostic C, Deglon N, Ball AK, Arsenijevic Y . Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther 2003; 14: 103–115. CASPubMed Google Scholar
Honjo M, Tanihara H, Kido N, Inatani M, Okazaki K, Honda Y . Expression of ciliary neurotrophic factor activated by retinal Muller cells in eyes with NMDA- and kainic acid-induced neuronal death. Invest Ophthalmol Vis Sci 2000; 41: 552–560. CASPubMed Google Scholar
Sievers J, Hausmann B, Unsicker K, Berry M . Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neurosci Lett 1987; 76: 157–162. CASPubMed Google Scholar
Kugler S, Klocker N, Kermer P, Isenmann S, Bahr M . Transduction of axotomized retinal ganglion cells by adenoviral vector administration at the optic nerve stump: an in vivo model system for the inhibition of neuronal apoptotic cell death. Gene Ther 1999; 6: 1759–1767. CASPubMed Google Scholar
Kwong JM, Lam TT . _N_-methyl-D-aspartate (NMDA) induced apoptosis in adult rabbit retinas. Exp Eye Res 2000; 71: 437–444. CASPubMed Google Scholar
Katai N, Yoshimura N . Apoptotic retinal neuronal death by ischemia-reperfusion is executed by two distinct caspase family proteases. Invest Ophthalmol Vis Sci 1999; 40: 2697–2705. CASPubMed Google Scholar
Kermer P, Klocker N, Bahr M . Long-term effect of inhibition of ced 3-like caspases on the survival of axotomized retinal ganglion cells in vivo. Exp Neurol 1999; 158: 202–205. CASPubMed Google Scholar
Chaudhary P, Ahmed F, Quebada P, Sharma SC . Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res Mol Brain Res 1999; 67: 36–45. CASPubMed Google Scholar
WoldeMussie E, Yoles E, Schwartz M, Ruiz G, Wheeler LA . Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma 2002; 11: 474–480. PubMed Google Scholar