β-Catenin destruction complex: insights and questions from a structural perspective (original) (raw)
Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M et al. (2002). Axin-mediated CKI phosphorylation of _β_-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev16: 1066–1076. ArticleCAS Google Scholar
Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N . (1998). Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev12: 2610–2622. ArticleCAS Google Scholar
Bajpai R, Makhijani K, Rao PR, Shashidhara LS . (2004). Drosophila Twins regulates Armadillo levels in response to Wg/Wnt signal. Development131: 1007–1016. ArticleCAS Google Scholar
Carthew RW, Rubin GM . (1990). Seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell63: 561–577. ArticleCAS Google Scholar
Cliffe A, Hamada F, Bienz M . (2003). A role of Dishevelled in relocating Axin to the plasma membrane during Wingless signaling. Curr Biol13: 960–966. ArticleCAS Google Scholar
Cohen P, Frame S . (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol2: 769–776. ArticleCAS Google Scholar
Cong F, Schweizer L, Varmus H . (2004a). Casein kinase I_ɛ_ modulates the signaling specificities of dishevelled. Mol Cell Biol24: 2000–2011. ArticleCAS Google Scholar
Cong F, Schweizer L, Varmus H . (2004b). Wnt signals across the plasma membrane to activate the _β_-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development131: 5103–5115. ArticleCAS Google Scholar
Cook D, Fry MJ, Hughes K, Sumathipala R, Woodgett JR, Dale TC . (1996). Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J15: 4526–4536. ArticleCAS Google Scholar
Creyghton MP, Roel G, Eichhorn PJ, Hijmans EM, Maurer I, Destree O et al. (2005). PR72, a novel regulator of Wnt signaling required for Naked cuticle function. Genes Dev19: 376–386. ArticleCAS Google Scholar
Creyghton MP, Roel G, Eichhorn PJ, Vredeveld LC, Destree O, Bernards R . (2006). PR130 is a modulator of the Wnt-signaling cascade that counters repression of the antagonist Naked cuticle. Proc Natl Acad Sci USA103: 5397–5402. ArticleCAS Google Scholar
Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V et al. (2003). Structural basis for recruitment of glycogen synthase kinase 3_β_ to the axin-APC scaffold complex. EMBO J22: 494–501. ArticleCAS Google Scholar
Dale T . (2006). Kinase cogs go forward and reverse in the Wnt signaling machine. Nat Struct Mol Biol13: 9–11. ArticleCAS Google Scholar
Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J et al. (2005). Erk associates with and primes GSK-3_β_ for its inactivation resulting in upregulation of _β_-catenin. Mol Cell19: 159–170. ArticleCAS Google Scholar
Ding VW, Chen RH, McCormick F . (2000). Differential regulation of glycogen synthase kinase 3_β_ by insulin and Wnt signaling. J Biol Chem275: 32475–32481. ArticleCAS Google Scholar
Farr III GH, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D . (2000). Interaction among GSK-3, GBP, Axin, and APC in Xenopus axis specification. J Cell Biol148: 691–702. ArticleCAS Google Scholar
Ferkey DM, Kimelman D . (2002). Glycogen synthase kinase-3_β_ mutagenesis identifies a common binding domain for GBP and Axin. J Biol Chem277: 16147–16152. ArticleCAS Google Scholar
Graham TA, Clements WK, Kimelman D, Xu W . (2002). The crystal structure of the _β_-catenin/ICAT complex reveals the inhibitory mechanism of ICAT. Mol Cell10: 563–571. ArticleCAS Google Scholar
Graham TA, Weaver C, Mao F, Kimelman D, Xu W . (2000). Crystal structure of a _β_-catenin/Tcf complex. Cell103: 885–896. ArticleCAS Google Scholar
Ha NC, Tonozuka T, Stamos JL, Choi HJ, Weis WI . (2004). Mechanism of phosphorylation-dependent binding of APC to _β_-catenin and its role in _β_-catenin degradation. Mol Cell15: 511–521. ArticleCAS Google Scholar
Hedgepeth CM, Deardorff MA, Rankin K, Klein PS . (1999). Regulation of glycogen synthase kinase 3_β_ and downstream Wnt signaling by Axin. Mol Cell Biol19: 7147–7157. ArticleCAS Google Scholar
Hsu W, Zeng L, Costantini F . (1999). Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem274: 3439–3445. ArticleCAS Google Scholar
Huber AH, Nelson WJ, Weis WI . (1997). Three-dimensional structure of the armadillo repeat region of _β_-catenin. Cell90: 871–882. ArticleCAS Google Scholar
Huber AH, Weis WI . (2001). The structure of the _β_-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by _β_-catenin. Cell105: 391–402. ArticleCAS Google Scholar
Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A . (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3_β_ and _β_-catenin and promotes GSK-3_β_-dependent phosphorylation of _β_-catenin. EMBO J17: 1371–1384. ArticleCAS Google Scholar
Itoh K, Antipova A, Ratcliffe MJ, Sokol S . (2000). Interaction of dishevelled and Xenopus axin-related protein is required for wnt signal transduction. Mol Cell Biol20: 2228–2238. ArticleCAS Google Scholar
Katanaev VL, Ponzielli R, Semeriva M, Tomlinson A . (2005). Trimeric G protein-dependent frizzled signaling in Drosophila. Cell120: 111–122. ArticleCAS Google Scholar
Kikuchi A, Kishida S, Yamamoto H . (2006). Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med38: 1–10. ArticleCAS Google Scholar
Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A . (1999). DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate _β_-catenin stability. Mol Cell Biol19: 4414–4422. ArticleCAS Google Scholar
Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW . (2003). The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol1: e10. Article Google Scholar
Li L, Mao J, Sun L, Liu W, Wu D . (2002). Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled. J Biol Chem277: 5977–5981. ArticleCAS Google Scholar
Li L, Yuan H, Weaver C, Mao J, Farr III GH, Sussman DJ et al. (1999). Axin and Frat-1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J18: 4233–4240. ArticleCAS Google Scholar
Li X, Yost HJ, Virshup DM, Seeling JM . (2001). Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J20: 4122–4131. ArticleCAS Google Scholar
Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al. (2002). Control of _β_-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell108: 837–847. ArticleCAS Google Scholar
Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL et al. (2001a). Siah-1 mediates a novel _β_-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell7: 927–936. ArticleCAS Google Scholar
Liu J, Xing Y, Hinds TR, Zheng J, Xu W . (2006). The third 20 amino acid repeat is the tightest binding site of APC for _β_-catenin. J Mol Biol360: 133–144. ArticleCAS Google Scholar
Liu T, DeCostanzo AJ, Liu X, Wang H, Hallagan S, Moon RT et al. (2001b). G protein signaling from activated rat frizzled-1 to the _β_-catenin-Lef-Tcf pathway. Science292: 1718–1722. ArticleCAS Google Scholar
Liu X, Rubin JS, Kimmel AR . (2005). Rapid, Wnt-induced changes in GSK3_β_ associations that regulate β_-catenin stabilization are mediated by G_α proteins. Curr Biol15: 1989–1997. ArticleCAS Google Scholar
Logan CY, Nusse R . (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol20: 781–810. ArticleCAS Google Scholar
Mao J, Wang J, Liu B, Pan W, Farr III GH, Flynn C et al. (2001). Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell7: 801–809. ArticleCAS Google Scholar
Matsubayashi H, Sese S, Lee JS, Shirakawa T, Iwatsubo T, Tomita T et al. (2004). Biochemical characterization of the Drosophila wingless signaling pathway based on RNA interference. Mol Cell Biol24: 2012–2024. ArticleCAS Google Scholar
Matsuzawa SI, Reed JC . (2001). Siah-1, SIP, and Ebi collaborate in a novel pathway for _β_-catenin degradation linked to p53 responses. Mol Cell7: 915–926. ArticleCAS Google Scholar
Moon RT, Kohn AD, De Ferrari GV, Kaykas A . (2004). WNT and _β_-catenin signalling: diseases and therapies. Nat Rev Genet5: 691–701. ArticleCAS Google Scholar
Nusse R . (2005). Cell biology: relays at the membrane. Nature438: 747–749. ArticleCAS Google Scholar
Park TJ, Gray RS, Sato A, Habas R, Wallingford JB . (2005). Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos. Curr Biol15: 1039–1044. ArticleCAS Google Scholar
Ratcliffe MJ, Itoh K, Sokol SY . (2000). A positive role for the PP2A catalytic subunit in Wnt signal transduction. J Biol Chem275: 35680–35683. ArticleCAS Google Scholar
Reya T, Clevers H . (2005). Wnt signalling in stem cells and cancer. Nature434: 843–850. ArticleCAS Google Scholar
Rothbacher U, Laurent MN, Deardorff MA, Klein PS, Cho KW, Fraser SE . (2000). Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J19: 1010–1022. ArticleCAS Google Scholar
Rubinfeld B, Tice DA, Polakis P . (2001). Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1_ɛ_. J Biol Chem276: 39037–39045. ArticleCAS Google Scholar
Salic A, Lee E, Mayer L, Kirschner MW . (2000). Control of _β_-catenin stability: reconstitution of the cytoplasmic steps of the Wnt pathway in Xenopus egg extracts. Mol Cell5: 523–532. ArticleCAS Google Scholar
Schwarz-Romond T, Asbrand C, Bakkers J, Kuhl M, Schaeffer HJ, Huelsken J et al. (2002). The ankyrin repeat protein Diversin recruits Casein kinase I_ɛ_ to the _β_-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev16: 2073–2084. ArticleCAS Google Scholar
Schweizer L, Varmus H . (2003). Wnt/Wingless signaling through _β_-catenin requires the function of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biol4: 4. Article Google Scholar
Seeling JM, Miller JR, Gil R, Moon RT, White R, Virshup DM . (1999). Regulation of _β_-catenin signaling by the B56 subunit of protein phosphatase 2A. Science283: 2089–2091. ArticleCAS Google Scholar
Sobrado P, Jedlicki A, Bustos VH, Allende CC, Allende JE . (2005). Basic region of residues 228–231 of protein kinase CK1_α_ is involved in its interaction with axin: binding to axin does not affect the kinase activity. J Cell Biochem94: 217–224. ArticleCAS Google Scholar
Spink K, Fridman SG, Weis WI . (2001). Molecular mechanisms of _β_-catenin recognition by adenomatous polyposis coli revealed by the structure of an APC-_β_-catenin complex. EMBO J20: 6203–6212. ArticleCAS Google Scholar
Spink KE, Polakis P, Weis WI . (2000). Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J19: 2270–2279. ArticleCAS Google Scholar
Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z et al. (2004). A mechanism for Wnt coreceptor activation. Mol Cell13: 149–156. ArticleCAS Google Scholar
Tickenbrock L, Kossmeier K, Rehmann H, Herrmann C, Muller O . (2003). Differences between the interaction of _β_-catenin with non-phosphorylated and single-mimicked phosphorylated 20-amino acid residue repeats of the APC protein. J Mol Biol327: 359–367. ArticleCAS Google Scholar
van Amerongen R, Berns A . (2005). Re-evaluating the role of Frat in Wnt-signal transduction. Cell Cycle4: 1065–1072. CASPubMed Google Scholar
van Amerongen R, Nawijn M, Franca-Koh J, Zevenhoven J, van der Gulden H, Jonkers J et al. (2005). Frat is dispensable for canonical Wnt signaling in mammals. Genes Dev19: 425–430. ArticleCAS Google Scholar
Wallingford JB, Habas R . (2005). The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development132: 4421–4436. ArticleCAS Google Scholar
Wharton Jr KA . (2003). Runnin' with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol253: 1–17. ArticleCAS Google Scholar
Willert K, Shibamoto S, Nusse R . (1999). Wnt-induced dephosphorylation of Axin releases _β_-catenin from the Axin complex. Genes Dev13: 1768–1773. ArticleCAS Google Scholar
Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D et al. (2003). Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell12: 1251–1260. ArticleCAS Google Scholar
Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP . (2003). Structure of a _β_-TrCP1-Skp1-_β_-catenin complex: destruction motif binding and lysine specificity of the SCF(_β_-TrCP1) ubiquitin ligase. Mol Cell11: 1445–1456. ArticleCAS Google Scholar
Xing Y, Clements WK, Kimelman D, Xu W . (2003). Crystal structure of a _β_-catenin/Axin complex suggests a mechanism for the _β_-catenin Destruction complex. Genes Dev17: 2753–2764. ArticleCAS Google Scholar
Xing Y, Clements WK, Le Trong I, Hinds TR, Stenkamp R, Kimelman D et al. (2004). Crystal structure of a _β_-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol Cell15: 523–533. ArticleCAS Google Scholar
Yanagawa S, Matsuda Y, Lee JS, Matsubayashi H, Sese S, Kadowaki T et al. (2002). Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J21: 1733–1742. ArticleCAS Google Scholar
Yang J, Wu J, Tan C, Klein PS . (2003). PP2A:B56_ɛ_ is required for Wnt/_β_-catenin signaling during embryonic development. Development130: 5569–5578. ArticleCAS Google Scholar
Yang J, Zhang W, Evans PM, Chen X, He X, Liu C . (2006). Adenomatous Polyposis Coli (APC) differentially regulates _β_-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem281: 17751–17757. ArticleCAS Google Scholar
Yost C, Farr III GH, Pierce SB, Ferkey DM, Chen MM, Kimelman D . (1998). GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell93: 1031–1041. ArticleCAS Google Scholar
Yuan H, Mao J, Li L, Wu D . (1999). Suppression of glycogen synthase kinase activity is not sufficient for leukemia enhancer factor-1 activation. J Biol Chem274: 30419–30423. ArticleCAS Google Scholar