Role of Toll-like receptors in gastrointestinal malignancies (original) (raw)
Abreu MT, Fukata M, Arditi M . (2005). TLR signaling in the gut in health and disease. J Immunol174: 4453–4460. CASPubMed Google Scholar
Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M . (2001). Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol167: 1609–1616. CASPubMed Google Scholar
Arber N, Eagle CJ, Spicak J, Racz I, Dite P, Hajer J et al. (2006). Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med355: 885–895. CASPubMed Google Scholar
Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E . (2004). Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol172: 2522–2529. CASPubMed Google Scholar
Atherfold PA, Jankowski JA . (2006). Molecular biology of Barrett's cancer. Best Pract Res Clin Gastroenterol20: 813–827. CASPubMed Google Scholar
Balkwill F, Coussens LM . (2004). Cancer: an inflammatory link. Nature431: 405–406. CASPubMed Google Scholar
Baoprasertkul P, Peatman E, Abernathy J, Liu Z . (2007). Structural characterisation and expression analysis of Toll-like receptor 2 gene from catfish. Fish Shellfish Immunol22: 418–426. CASPubMed Google Scholar
Bernstein CN, Eaden J, Steinhart AH, Munkholm P, Gordon PH . (2002). Cancer prevention in inflammatory bowel disease and the chemoprophylactic potential of 5-aminosalicylic acid. Inflamm Bowel Dis8: 356–361. PubMed Google Scholar
Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K et al. (2006). Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med355: 873–884. ArticleCASPubMed Google Scholar
Boraska Jelavic T, Barisic M, Drmic Hofman I, Boraska V, Vrdoljak E, Peruzovic M et al. (2006). Microsatelite GT polymorphism in the Toll-like receptor 2 is associated with colorectal cancer. Clin Genet70: 156–160. CASPubMed Google Scholar
Brand S, Staudinger T, Schnitzler F, Pfennig S, Hofbauer K, Dambacher J et al. (2005). The role of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn's disease. Inflamm Bowel Dis11: 645–652. PubMed Google Scholar
Brittan M, Wright NA . (2002). Gastrointestinal stem cells. J Pathol197: 492–509. PubMed Google Scholar
Brown SL, Riehl TE, Walker MR, Geske MJ, Doherty JM, Stenson WF et al. (2007). Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest117: 258–269. CASPubMedPubMed Central Google Scholar
Cario E, Podolsky DK . (2000). Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun68: 7010–7017. CASPubMedPubMed Central Google Scholar
Chamaillard M, Girardin SE, Viala J, Philpott DJ . (2003). Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol5: 581–592. CASPubMed Google Scholar
Chang YJ, Wu MS, Lin JT, Sheu BS, Muta T, Inoue H et al. (2004). Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol66: 1465–1477. CASPubMed Google Scholar
Choi PM, Zelig MP . (1994). Similarity of colorectal cancer in Crohn's disease and ulcerative colitis: implications for carcinogenesis and prevention. Gut35: 950–954. CASPubMedPubMed Central Google Scholar
Chung YC, Chang YF . (2003). Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol83: 222–226. PubMed Google Scholar
Contasta I, Pellegrini P, Berghella AM, Del Beato T, Adorno D . (2006). Colon cancer and gene alterations: their immunological implications and suggestions for prognostic indices and improvements in biotherapy. Cancer Biother Radiopharm21: 488–505. CASPubMed Google Scholar
Derdak Z, Fulop P, Sabo E, Tavares R, Berthiaume EP, Resnick MB et al. (2006). Enhanced colon tumor induction in uncoupling protein-2 deficient mice is associated with NF-kappaB activation and oxidative stress. Carcinogenesis27: 956–961. CASPubMed Google Scholar
de Visser KE, Coussens LM . (2005). The interplay between innate and adaptive immunity regulates cancer development. Cancer Immunol Immunother54: 1143–1152. CASPubMed Google Scholar
De Vita F, Romano C, Orditura M, Galizia G, Martinelli E, Lieto E et al. (2001). Interleukin-6 serum level correlates with survival in advanced gastrointestinal cancer patients but is not an independent prognostic indicator. J Interferon Cytokine Res21: 45–52. CASPubMed Google Scholar
Dove WF, Clipson L, Gould KA, Luongo C, Marshall DJ, Moser AR et al. (1997). Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res57: 812–814. CASPubMed Google Scholar
Drewitz DJ, Sampliner RE, Garewal HS . (1997). The incidence of adenocarcinoma in Barrett's esophagus: a prospective study of 170 patients followed 4.8 years. Am J Gastroenterol92: 212–215. CASPubMed Google Scholar
Du X, Poltorak A, Wei Y, Beutler B . (2000). Three novel mammalian Toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw11: 362–371. CASPubMed Google Scholar
Eaden JA, Abrams KR, Mayberry JF . (2001). The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut48: 526–535. CASPubMedPubMed Central Google Scholar
Ekbom A, Helmick C, Zack M, Adami HO . (1990). Increased risk of large-bowel cancer in Crohn's disease with colonic involvement. Lancet336: 357–359. CASPubMed Google Scholar
Engle SJ, Ormsby I, Pawlowski S, Boivin GP, Croft J, Balish E et al. (2002). Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res62: 6362–6366. CASPubMed Google Scholar
Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K, Plank B et al. (2003). CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol162: 691–702. CASPubMedPubMed Central Google Scholar
Farinha P, Gascoyne RD . (2005). Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Oncol23: 6370–6378. CASPubMed Google Scholar
Fass R, Hell RW, Garewal HS, Martinez P, Pulliam G, Wendel C et al. (2001). Correlation of oesophageal acid exposure with Barrett's oesophagus length. Gut48: 310–313. CASPubMedPubMed Central Google Scholar
Fischer W, Puls J, Buhrdorf R, Gebert B, Odenbreit S, Haas R . (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol42: 1337–1348. CASPubMed Google Scholar
Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T et al. (2004). Deficient host–bacteria interactions in inflammatory bowel disease? The Toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut53: 987–992. CASPubMedPubMed Central Google Scholar
Frattini M, Balestra D, Suardi S, Oggionni M, Alberici P, Radice P et al. (2004). Different genetic features associated with colon and rectal carcinogenesis. Clin Cancer Res10: 4015–4021. CASPubMed Google Scholar
Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS et al. (2006). Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology131: 862–877. CASPubMed Google Scholar
Fukata M, Chen A, Vamadevan AS, Choen J, Breglio K, Krishnareddy S et al. (2007). Toll-like receptor-4 (TLR4) promotes the development of colitis-associated colorectal tumors. Gastroenterology (in press).
Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K et al. (2005). Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol288: G1055–G1065. CASPubMed Google Scholar
Fukumoto S, Ichihara T, Takada M, Kuroda Y . (2003). Expression of cyclooxygenases in Helicobacter pylori gastritis and residual gastritis after distal gastrectomy. World J Surg27: 145–148. PubMed Google Scholar
Furrie E, Macfarlane S, Thomson G, Macfarlane GT . (2005). Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology115: 565–574. CASPubMedPubMed Central Google Scholar
Gammon MD, Schoenberg JB, Ahsan H, Risch HA, Vaughan TL, Chow WH et al. (1997). Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst89: 1277–1284. CASPubMed Google Scholar
Garlanda C, Riva F, Veliz T, Polentarutti N, Pasqualini F, Radaelli E et al. (2007). Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family. Cancer Res67: 6017–6021. CASPubMed Google Scholar
Gazouli M, Mantzaris G, Kotsinas A, Zacharatos P, Papalambros E, Archimandritis A et al. (2005). Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol11: 681–685. CASPubMedPubMed Central Google Scholar
Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell118: 285–296. CASPubMed Google Scholar
Gunter MJ, Canzian F, Landi S, Chanock SJ, Sinha R, Rothman N . (2006). Inflammation-related gene polymorphisms and colorectal adenoma. Cancer Epidemiol Biomarkers Prev15: 1126–1131. CASPubMed Google Scholar
Gupta RB, Harpaz N, Itzkowitz S, Hossain S, Matula S, Kornbluth A et al. (2007). Histologic inflammation is a risk factor for progression to colorectal neoplasia in ulcerative colitis: a cohort study. Gastroenterology133: 1099–1105. PubMed Google Scholar
Gyde SN, Prior P, Allan RN, Stevens A, Jewell DP, Truelove SC et al. (1988). Colorectal cancer in ulcerative colitis: a cohort study of primary referrals from three centres. Gut29: 206–217. CASPubMedPubMed Central Google Scholar
Haselkorn T, Whittemore AS, Lilienfeld DE . (2005). Incidence of small bowel cancer in the United States and worldwide: geographic, temporal, and racial differences. Cancer Causes Control16: 781–787. PubMed Google Scholar
Hausmann M, Kiessling S, Mestermann S, Webb G, Spottl T, Andus T et al. (2002). Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology122: 1987–2000. CASPubMed Google Scholar
Helzlsouer KJ, Erlinger TP, Platz EA . (2006). C-reactive protein levels and subsequent cancer outcomes: results from a prospective cohort study. Eur J Cancer42: 704–707. CASPubMed Google Scholar
Hill MJ, Drasar BS, Hawksworth G, Aries V, Crowther JS, Williams RE . (1971). Bacteria and aetiology of cancer of large bowel. Lancet1: 95–100. CASPubMed Google Scholar
Hold GL, Rabkin CS, Chow WH, Smith MG, Gammon MD, Risch HA et al. (2007). A functional polymorphism of Toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology132: 905–912. CASPubMed Google Scholar
Hope ME, Hold GL, Kain R, El-Omar EM . (2005). Sporadic colorectal cancer – role of the commensal microbiota. FEMS Microbiol Lett244: 1–7. CASPubMed Google Scholar
Houghton J, Wang TC . (2005). Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology128: 1567–1578. CASPubMed Google Scholar
Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH et al. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res65: 5009–5014. CASPubMed Google Scholar
Huang B, Zhao J, Shen S, Li H, He KL, Shen GX et al. (2007). Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res67: 4346–4352. CASPubMed Google Scholar
Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411: 599–603. CASPubMed Google Scholar
Ishida I, Kubo H, Suzuki S, Suzuki T, Akashi S, Inoue K et al. (2002). Hypoxia diminishes Toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. J Immunol169: 2069–2075. CASPubMed Google Scholar
Ishihara S, Rumi MA, Kadowaki Y, Ortega-Cava CF, Yuki T, Yoshino N et al. (2004). Essential role of MD-2 in TLR4-dependent signaling during _Helicobacter pylori_-associated gastritis. J Immunol173: 1406–1416. CASPubMed Google Scholar
Itzkowitz SH, Harpaz N . (2004). Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. Gastroenterology126: 1634–1648. PubMed Google Scholar
Itzkowitz SH, Yio X . (2004). Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol287: G7–G17. CASPubMed Google Scholar
Janne PA, Mayer RJ . (2000). Chemoprevention of colorectal cancer. N Engl J Med342: 1960–1968. CASPubMed Google Scholar
Kado S, Uchida K, Funabashi H, Iwata S, Nagata Y, Ando M et al. (2001). Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res61: 2395–2398. CASPubMed Google Scholar
Kawahara T, Kuwano Y, Teshima-Kondo S, Kawai T, Nikawa T, Kishi K et al. (2001a). Toll-like receptor 4 regulates gastric pit cell responses to Helicobacter pylori infection. J Med Invest48: 190–197. CASPubMed Google Scholar
Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K . (2001b). Type I Helicobacter pylori lipopolysaccharide stimulates Toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect Immun69: 4382–4389. CASPubMedPubMed Central Google Scholar
Kelly IM, Bartram CI . (1993). Pseudotumoral appearance of small bowel strictureplasty for Crohn's disease. Abdom Imaging18: 366–368. CASPubMed Google Scholar
Kinoshita T, Ito H, Miki C . (1999). Serum interleukin-6 level reflects the tumor proliferative activity in patients with colorectal carcinoma. Cancer85: 2526–2531. CASPubMed Google Scholar
Konishi M, Kikuchi-Yanoshita R, Tanaka K, Muraoka M, Onda A, Okumura Y et al. (1996). Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology111: 307–317. CASPubMed Google Scholar
Langholz E, Munkholm P, Davidsen M, Binder V . (1992). Colorectal cancer risk and mortality in patients with ulcerative colitis. Gastroenterology103: 1444–1451. CASPubMed Google Scholar
Laqueur GL, Matsumoto H, Yamamoto RS . (1981). Comparison of the carcinogenicity of methylazoxymethanol-beta-D-glucosiduronic acid in conventional and germfree Sprague–Dawley rats. J Natl Cancer Inst67: 1053–1055. CASPubMed Google Scholar
Leblond CP . (1964). Classification of cell populations on the basis of their proliferative behavior. Natl Cancer Inst Monogr14: 119–150. CASPubMed Google Scholar
Maggio-Price L, Bielefeldt-Ohmann H, Treuting P, Iritani BM, Zeng W, Nicks A et al. (2005). Dual infection with Helicobacter bilis and Helicobacter hepaticus in p-glycoprotein-deficient mdr1a−/− mice results in colitis that progresses to dysplasia. Am J Pathol166: 1793–1806. CASPubMedPubMed Central Google Scholar
Mandell L, Moran AP, Cocchiarella A, Houghton J, Taylor N, Fox JG et al. (2004). Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via Toll-like receptor 2 but not Toll-like receptor 4. Infect Immun72: 6446–6454. CASPubMedPubMed Central Google Scholar
Manju V, Nalini N . (2006). Effect of ginger on bacterial enzymes in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Eur J Cancer Prev15: 377–383. CASPubMed Google Scholar
Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S et al. (2005). ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol6: 587–592. CASPubMed Google Scholar
Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS et al. (2003). Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host–microbial interactions in the gut. J Immunol170: 1406–1415. CASPubMed Google Scholar
Naik S, Kelly EJ, Meijer L, Pettersson S, Sanderson IR . (2001). Absence of Toll-like receptor 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J Pediatr Gastroenterol Nutr32: 449–453. CASPubMed Google Scholar
Nowacki MR . (1993). Cell proliferation in colonic crypts of germ-free and conventional mice – preliminary report. Folia Histochem Cytobiol31: 77–81. CASPubMed Google Scholar
Ohara T, Morishita T, Suzuki H, Hibi T . (2006). Heterozygous Thr 135 Ala polymorphism at leucine-rich repeat (LRR) in genomic DNA of Toll-like receptor 4 in patients with poorly-differentiated gastric adenocarcinomas. Int J Mol Med18: 59–63. CASPubMed Google Scholar
Oostenbrug LE, Drenth JP, de Jong DJ, Nolte IM, Oosterom E, van Dullemen HM et al. (2005). Association between Toll-like receptor 4 and inflammatory bowel disease. Inflamm Bowel Dis11: 567–575. PubMed Google Scholar
Otte JM, Cario E, Podolsky DK . (2004). Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology126: 1054–1070. CASPubMed Google Scholar
Ouburg S, Mallant-Hent R, Crusius JB, van Bodegraven AA, Mulder CJ, Linskens R et al. (2005). The toll-like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localisation of Crohn's disease without a major role for the Saccharomyces cerevisiae mannan-LBP-CD14-TLR4 pathway. Gut54: 439–440. CASPubMedPubMed Central Google Scholar
Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS . (2004). Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol173: 3589–3593. CASPubMed Google Scholar
Parkin DM, Pisani P, Ferlay J . (1999). Global cancer statistics. CA Cancer J Clin49: 33–64. CASPubMed Google Scholar
Paulsen JE, Knutsen H, Olstorn HB, Loberg EM, Alexander J . (2006). Identification of flat dysplastic aberrant crypt foci in the colon of azoxymethane-treated A/J mice. Int J Cancer118: 540–546. CASPubMed Google Scholar
Peek Jr RM, Blaser MJ . (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer2: 28–37. CASPubMed Google Scholar
Peter S, Beglinger C . (2007). Helicobacter pylori and gastric cancer: the causal relationship. Digestion75: 25–35. PubMed Google Scholar
Pierik M, Joossens S, Van Steen K, Van Schuerbeek N, Vlietinck R, Rutgeerts P et al. (2006). Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis12: 1–8. PubMed Google Scholar
Pomorski T, Meyer TF, Naumann M . (2001). _Helicobacter pylori_-induced prostaglandin E(2) synthesis involves activation of cytosolic phospholipase A(2) in epithelial cells. J Biol Chem276: 804–810. CASPubMed Google Scholar
Potten CS, Booth C, Pritchard DM . (1997). The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol78: 219–243. CASPubMedPubMed Central Google Scholar
Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature359: 235–237. CASPubMed Google Scholar
Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS . (2005). Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA102: 99–104. CASPubMed Google Scholar
Rad R, Brenner L, Krug A, Voland P, Mages J, Lang R et al. (2007). Toll-like receptor-dependent activation of antigen-presenting cells affects adaptive immunity to Helicobacter pylori. Gastroenterology133: 150–163. CASPubMed Google Scholar
Rakoff-Nahoum S, Medzhitov R . (2007). Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science317: 124–127. CASPubMed Google Scholar
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R . (2004). Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118: 229–241. CASPubMed Google Scholar
Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS . (2002). Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res62: 165–170. CASPubMed Google Scholar
Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL . (1975). Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res35: 287–290. CASPubMed Google Scholar
Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF . (1998). A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA95: 588–593. CASPubMedPubMed Central Google Scholar
Romano M, Ricci V, Memoli A, Tuccillo C, Di Popolo A, Sommi P et al. (1998). Helicobacter pylori up-regulates cyclooxygenase-2 mRNA expression and prostaglandin E2 synthesis in MKN 28 gastric mucosal cells in vitro. J Biol Chem273: 28560–28563. CASPubMed Google Scholar
Rumio C, Besusso D, Arnaboldi F, Palazzo M, Selleri S, Gariboldi S et al. (2006). Activation of smooth muscle and myenteric plexus cells of jejunum via Toll-like receptor 4. J Cell Physiol208: 47–54. CASPubMed Google Scholar
Rumio C, Besusso D, Palazzo M, Selleri S, Sfondrini L, Dubini F et al. (2004). Degranulation of paneth cells via Toll-like receptor 9. Am J Pathol165: 373–381. CASPubMedPubMed Central Google Scholar
Rutter M, Saunders B, Wilkinson K, Rumbles S, Schofield G, Kamm M et al. (2004). Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology126: 451–459. PubMed Google Scholar
Sawaoka H, Kawano S, Tsuji S, Tsuji M, Sun W, Gunawan ES et al. (1998). Helicobacter pylori infection induces cyclooxygenase-2 expression in human gastric mucosa. Prostaglandins Leukot Essent Fatty Acids59: 313–316. CASPubMed Google Scholar
Schmausser B, Andrulis M, Endrich S, Lee SK, Josenhans C, Muller-Hermelink HK et al. (2004). Expression and subcellular distribution of Toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin Exp Immunol136: 521–526. CASPubMedPubMed Central Google Scholar
Schmausser B, Andrulis M, Endrich S, Muller-Hermelink HK, Eck M . (2005). Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol295: 179–185. CASPubMed Google Scholar
Schultz M, Tonkonogy SL, Sellon RK, Veltkamp C, Godfrey VL, Kwon J et al. (1999). IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol276: G1461–G1472. CASPubMed Google Scholar
Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E et al. (1998). Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun66: 5224–5231. CASPubMedPubMed Central Google Scholar
Sigel JE, Petras RE, Lashner BA, Fazio VW, Goldblum JR . (1999). Intestinal adenocarcinoma in Crohn's disease: a report of 30 cases with a focus on coexisting dysplasia. Am J Surg Pathol23: 651–655. CASPubMed Google Scholar
Spechler SJ . (1999). The role of gastric carditis in metaplasia and neoplasia at the gastroesophageal junction. Gastroenterology117: 218–228. CASPubMed Google Scholar
Stolte M, Eidt S . (1989). Lymphoid follicles in antral mucosa: immune response to Campylobacter pylori? J Clin Pathol42: 1269–1271. CASPubMedPubMed Central Google Scholar
Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C et al. (1992). Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science256: 668–670. CASPubMed Google Scholar
Sung JJ, Leung WK, Go MY, To KF, Cheng AS, Ng EK et al. (2000). Cyclooxygenase-2 expression in _Helicobacter pylori_-associated premalignant and malignant gastric lesions. Am J Pathol157: 729–735. CASPubMedPubMed Central Google Scholar
Suzuki M, Hisamatsu T, Podolsky DK . (2003). Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4–MD-2 complex. Infect Immun71: 3503–3511. CASPubMedPubMed Central Google Scholar
Suzuki R, Kohno H, Sugie S, Nakagama H, Tanaka T . (2006). Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis27: 162–169. CASPubMed Google Scholar
Suzuki R, Kohno H, Sugie S, Tanaka T . (2005). Dose-dependent promoting effect of dextran sodium sulfate on mouse colon carcinogenesis initiated with azoxymethane. Histol Histopathol20: 483–492. CASPubMed Google Scholar
Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J et al. (1998). Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology115: 281–286. CASPubMed Google Scholar
Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R et al. (2004). Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett93: 97–108. CASPubMed Google Scholar
Torok HP, Glas J, Tonenchi L, Bruennler G, Folwaczny M, Folwaczny C . (2004a). Crohn's disease is associated with a Toll-like receptor-9 polymorphism. Gastroenterology127: 365–366. PubMed Google Scholar
Torok HP, Glas J, Tonenchi L, Mussack T, Folwaczny C . (2004b). Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol112: 85–91. CASPubMed Google Scholar
Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP et al. (2004). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol5: 1166–1174. CASPubMed Google Scholar
Wang X, Huycke MM . (2007). Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology132: 551–561. CASPubMed Google Scholar
Wyatt JI, Rathbone BJ . (1988). Immune response of the gastric mucosa to Campylobacter pylori. Scand J Gastroenterol Suppl142: 44–49. CASPubMed Google Scholar
Xiao H, Gulen MF, Qin J, Yao J, Bulek K, Kish D et al. (2007). The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity26: 461–475. CASPubMed Google Scholar