PP2A-Bγ subunit and KCNQ2 K+ channels in bipolar disorder (original) (raw)
Goodwin FK . From the alcohol, drug abuse, and mental health administration. JAMA 1990; 264: 2495. ArticleCASPubMed Google Scholar
Blackwood DH, He L, Morris SW, McLean A, Whitton C, Thomson M et al. A locus for bipolar affective disorder on chromosome 4p. Nat Genet 1996; 12: 427–430. ArticleCASPubMed Google Scholar
Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA 1999; 96: 5604–5609. ArticleCASPubMedPubMed Central Google Scholar
Polymeropoulos MH, Schaffer AA . Scanning the genome with 1772 microsatellite markers in search of a bipolar disorder susceptibility gene. Mol Psychiatr 1996; 1: 404–407. CAS Google Scholar
Ewald H, Degn B, Mors O, Kruse TA . Support for the possible locus on chromosome 4p16 for bipolar affective disorder. Mol Psychiatr 1998; 3: 442–448. ArticleCAS Google Scholar
Als TD, Dahl HA, Flint TJ, Wang AG, Vang M, Mors O et al. Possible evidence for a common risk locus for bipolar affective disorder and schizophrenia on chromosome 4p16 in patients from the Faroe Islands. Mol Psychiatr 2004; 9: 93–98. ArticleCAS Google Scholar
Swift RG, Polymeropoulos MH, Torres R, Swift M . Predisposition of Wolfram syndrome heterozygotes to psychiatric illness. Mol Psychiatr 1998; 3: 86–91. ArticleCAS Google Scholar
Kato T, Iwamoto K, Washizuka S, Mori K, Tajima O, Akiyama T et al. No association of mutations and mRNA expression of WFS1/wolframin with bipolar disorder in humans. Neurosci Lett 2003; 338: 21–24. ArticleCASPubMed Google Scholar
Abou Jamra R, Schumacher J, Golla A, Richter C, Otte AC, Schulze TG et al. Family-based association studies of alpha-adrenergic receptor genes in chromosomal regions with linkage to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2004; 126: 79–81. Article Google Scholar
Kirov G, Jones I, McCandless F, Craddock N, Owen MJ . Family-based association studies of bipolar disorder with candidate genes involved in dopamine neurotransmission: DBH, DAT1, COMT, DRD2, DRD3 and DRD5. Mol Psychiatr 1999; 4: 558–565. ArticleCAS Google Scholar
Muir WJ, Thomson ML, McKeon P, Mynett-Johnson L, Whitton C, Evans KL et al. Markers close to the dopamine D5 receptor gene (DRD5) show significant association with schizophrenia but not bipolar disorder. Am J Med Genet 2001; 105: 152–158. ArticleCASPubMed Google Scholar
Strack S, Zaucha JA, Ebner FF, Colbran RJ, Wadzinski BE . Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol 1998; 392: 515–527. ArticleCASPubMed Google Scholar
Trojanowski JQ, Lee VM . Phosphorylation of paired helical filament tau in Alzheimer's disease neurofibrillary lesions: focusing on phosphatases. FASEB J 1995; 9: 1570–1576. ArticleCASPubMed Google Scholar
Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG . An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005; 122: 261–273. ArticleCASPubMed Google Scholar
Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680. ArticleCASPubMedPubMed Central Google Scholar
Hoshi N, Zhang JS, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci 2003; 6: 564–571. ArticleCASPubMedPubMed Central Google Scholar
Gargus JJ . Unraveling monogenic channelopathies and their implications for complex polygenic disease. Am J Hum Genet 2003; 72: 785–803. ArticleCASPubMedPubMed Central Google Scholar
Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ et al. A potassium channel mutation in neonatal human epilepsy. Science 1998; 279: 403–406. ArticleCASPubMed Google Scholar
Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998; 18: 25–29. ArticleCASPubMed Google Scholar
Biervert C, Steinlein OK . Structural and mutational analysis of KCNQ2, the major gene locus for benign familial neonatal convulsions. Hum Genet 1999; 104: 234–240. CASPubMed Google Scholar
Maljevic S, Lerche C, Seebohm G, Alekov AK, Busch AE, Lerche H . C-terminal interaction of KCNQ2 and KCNQ3 K+ channels. J Physiol 2003; 548: 353–360. CASPubMedPubMed Central Google Scholar
Schwake M, Jentsch TJ, Friedrich T . A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep 2003; 4: 76–81. ArticleCASPubMedPubMed Central Google Scholar
Nakajo K, Kubo Y . Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes. J Physiol 2005; 569: 59–74. ArticleCASPubMedPubMed Central Google Scholar
Bhat RV, Budd Haeberlein SL, Avila J . Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 2004; 89: 1313–1317. ArticleCASPubMed Google Scholar
O'Brien WT, Harper AD, Jove F, Woodgett JR, Maretto S, Piccolo S et al. Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci 2004; 24: 6791–6798. ArticleCASPubMedPubMed Central Google Scholar
Kennelly PJ, Krebs EG . Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 1991; 266: 15555–15558. CASPubMed Google Scholar
Schroeder BC, Kubisch C, Stein V, Jentsch TJ . Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 1998; 396: 687–690. ArticleCASPubMed Google Scholar
Visscher PM, Haley CS, Ewald H, Mors O, Egeland J, Thiel B et al. Joint multi-population analysis for genetic linkage of bipolar disorder or ‘wellness’ to chromosome 4p. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 18–24. Article Google Scholar
Janssens V, Goris J . Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001; 353: 417–439. ArticleCASPubMedPubMed Central Google Scholar
Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 2005; 37: 863–867. ArticleCASPubMedPubMed Central Google Scholar
Tinel N, Lauritzen I, Chouabe C, Lazdunski M, Borsotto M . The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3. FEBS Lett 1998; 438: 171–176. ArticleCASPubMed Google Scholar
Tinel N, Diochot S, Lauritzen I, Barhanin J, Lazdunski M, Borsotto M . M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit. FEBS Lett 2000; 480: 137–141. ArticleCASPubMed Google Scholar
Schmidt K, Kins S, Schild A, Nitsch RM, Hemmings BA, Gotz J . Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. Eur J Neurosci 2002; 16: 2039–2048. ArticlePubMed Google Scholar
Weber YG, Geiger J, Kampchen K, Landwehrmeyer B, Sommer C, Lerche H . Immunohistochemical analysis of KCNQ2 potassium channels in adult and developing mouse brain. Brain Res 2006; 1077: 1–6. ArticleCASPubMed Google Scholar
Chouabe C, Neyroud N, Guicheney P, Lazdunski M, Romey G, Barhanin J . Properties of KvLQT1 K+ channel mutations in Romano–Ward and Jervell and Lange–Nielsen inherited cardiac arrhythmias. EMBO J 1997; 16: 5472–5479. ArticleCASPubMedPubMed Central Google Scholar
Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996; 12: 17–23. ArticlePubMed Google Scholar
Jentsch TJ, Schroeder BC, Kubisch C, Friedrich T, Stein V . Pathophysiology of KCNQ channels: neonatal epilepsy and progressive deafness. Epilepsia 2000; 41: 1068–1069. ArticleCASPubMed Google Scholar
Jentsch TJ . Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 2000; 1: 21–30. ArticleCASPubMed Google Scholar
Avramopoulos D, Willour VL, Zandi PP, Huo Y, MacKinnon DF, Potash JB et al. Linkage of bipolar affective disorder on chromosome 8q24: follow-up and parametric analysis. Mol Psychiatr 2004; 9: 191–196. ArticleCAS Google Scholar
Pan Z, Selyanko AA, Hadley JK, Brown DA, Dixon JE, McKinnon D . Alternative splicing of KCNQ2 potassium channel transcripts contributes to the functional diversity of M-currents. J Physiol 2001; 531: 347–358. ArticleCASPubMedPubMed Central Google Scholar
Xie X, Hagan RM . Cellular and molecular actions of lamotrigine: possible mechanisms of efficacy in bipolar disorder. Neuropsychobiology 1998; 38: 119–130. ArticleCASPubMed Google Scholar
Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D . Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 2005; 8: 51–60. ArticleCASPubMed Google Scholar
Suh BC, Hille B . Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 2002; 35: 507–520. ArticleCASPubMed Google Scholar
Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM, Jin T et al. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 2003; 37: 963–975. ArticleCASPubMed Google Scholar
Delmas P, Brown DA . Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 2005; 6: 850–862. ArticleCASPubMed Google Scholar
Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459. CASPubMedPubMed Central Google Scholar
Cooper EC, Jan LY . M-channels: neurological diseases, neuromodulation, and drug development. Arch Neurol 2003; 60: 496–500. ArticlePubMed Google Scholar
Peretz A, Degani N, Nachman R, Uziyel Y, Gibor G, Shabat D et al. Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 2005; 67: 1053–1066. ArticleCASPubMed Google Scholar
Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci 2003; 23: 7227–7236. ArticleCASPubMedPubMed Central Google Scholar
Cavarec L, Kamphausen T, Dubourg B, Callebaut I, Lemeunier F, Metivier D et al. Identification and characterization of Moca-cyp. A Drosophila melanogaster nuclear cyclophilin. J Biol Chem 2002; 277: 41171–41182. ArticleCASPubMed Google Scholar