Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response (original) (raw)
Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem.67, 753–791 (1998). ArticleCAS Google Scholar
Derynck, R., Zhang, Y. & Feng, X. H. Smads: transcriptional activators of TGF-beta responses. Cell95, 737–740 (1998). ArticleCAS Google Scholar
Roberts, A. B. Transforming growth factor-β: activity and efficacy in animal models of wound healing. Wound Repair Regen.3, 408–418 (1995). ArticleCAS Google Scholar
O"Kane, S. & Ferguson, M. W. J. Transforming growth factor beta s and wound healing. Int. J. Biochem.Cell Biol.29, 63–78 (1997). ArticleCAS Google Scholar
Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J.18, 1280–1291 (1999). ArticleCAS Google Scholar
Datto, M. B. et al. Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol. Cell Biol.19, 2495–2504 (1999). ArticleCAS Google Scholar
Zhu, Y., Richardson, J. A., Parada, L. F., & Graff, J. M. Smad3 mutant mice develop metastatic colorectal cancer. Cell18, 703–714 (1998). Article Google Scholar
Weinstein, M., Yang, X., Li, C., Xu, X., & Deng, C. Failure of extraembryonic membrane formation and mesoderm induction in embryos lacking the tumor suppressor Smad2. Proc. Natl Acad. Sci. USA95, 9378–9383 (1998). ArticleCAS Google Scholar
Ashcroft, G. S. et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nature Med.3, 1209–1215 (1997). ArticleCAS Google Scholar
Gross, J. et al. On the mechanism of skin wound “contraction”: a granulation tissue “knockout” with a normal phenotype. Proc. Natl Acad. Sci. USA92, 5982–5986 (1995). ArticleCAS Google Scholar
Wahl, S. M. et al. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc. Natl Acad. Sci. USA84, 5788–5792 (1987). ArticleCAS Google Scholar
Leibovich, S. J. & Ross, R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am. J. Pathol.78, 71–100 (1975). CASPubMedPubMed Central Google Scholar
McCartney-Francis, N., & Wahl, S. M. Transforming growth factor beta: a matter of life and death. J. Leuk. Biol.55, 401–409 (1994). ArticleCAS Google Scholar
Pierce, G. F. et al. Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet-derived growth factor. Proc. Natl Acad. Sci. USA86, 2229–2233 (1989). ArticleCAS Google Scholar
Vindevoghel, L. et al. SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor beta. Proc. Natl Acad. Sci. USA95, 14769–14774 (1998). ArticleCAS Google Scholar
Chen, S. J. et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad3. J. Invest. Dermatol.112, 49–57 (1999). ArticleCAS Google Scholar
Hocevar, B. A., Brown, T. L. & Howe, P. H. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J.18, 1345–1356 (1999). ArticleCAS Google Scholar
Wiseman, D. M., Polverini, P. J., Kamp, D. W. & Leibovich, S. J. Transforming growth factor-beta (TGF beta) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem. Biophys. Res. Commun.157, 793–800 (1988). ArticleCAS Google Scholar
Wahl, S. M., Allen, J. B., Weeks, B. S., Wong, H. L. & Klotman, P. E. Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc. Natl Acad. Sci. USA90, 4577–4581 (1993). ArticleCAS Google Scholar
Zambruno, G. et al. Transforming growth factor-beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications for wound healing. J. Cell Biol.129, 853–865 (1995). ArticleCAS Google Scholar
Mustoe, T. A., Pierce, G. F., Morishima, C. & Deuel, T. F. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J. Clin. Invest.87, 694–703 (1991). ArticleCAS Google Scholar
Hebda, P. A. Stimulatory effects of transforming growth factor-beta and epidermal growth factor on epidermal cell outgrowth from porcine skin explant cultures. J. Invest. Dermatol.91, 440–445 (1988). ArticleCAS Google Scholar
Yanagisawa, K. et al. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-beta in human normal lung epithelial cells. Oncogene17, 1743–1747 (1998). ArticleCAS Google Scholar
Dennler, S., Huet, S. & Gauthier, J. M. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene18, 1643–1648 (1999). ArticleCAS Google Scholar
Ulloa, L., Doody, J. & Massague, J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature397, 710–713 (1999). ArticleCAS Google Scholar
Yanagisawa, J. et al. Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science283, 1317–1321 (1999). ArticleCAS Google Scholar
Kurokawa, M. et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature2, 92–96 (1998). Article Google Scholar
de Caestecker, M. P. et al. Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev.12, 587–592 (1998). Article Google Scholar
Kretzschmar, M. et al. A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 1, 804–816 (1999). Article Google Scholar
Liu, X. et al. Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc. Natl Acad. Sci. USA94, 10669–10674 (1997). ArticleCAS Google Scholar
Feldman, G. et al. STAT5A-deficient mice demonstrate a defect in granulocyte-macrophage colony-stimulating factor-induced proliferation and gene expression. Blood90, 1768–1776 (1997). CASPubMed Google Scholar
Dlugosz, A. A., Glick, A. B., Tennenbaum, T., Weinberg, W. C. & Yuspa, S. H. Isolation and utilization of epidermal keratinocytes for oncogene research. Methods Enzymol.254, 3–20 (1995). ArticleCAS Google Scholar
Danielpour, D. et al. Immunodetection and quantitation of the two forms of transforming growth factor-beta (TGF-beta 1 and TGF-beta 2) secreted by cells in culture. J. Cell Physiol.138, 79–86 (1989). ArticleCAS Google Scholar