A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARα and T18 oncoproteins (original) (raw)
Smith, M.A., Parkinson, D.R., Cheson, B.D. & Friedman, M.A. Retinoids in cancer therapy. J. Clin. Oncol.10, 839–864 (1992). ArticleCASPubMed Google Scholar
Gudas, L.J., Sporn, M.B. & Roberts, A.B. The Retinoids: Cellular Biology and Biochemistry of the Retinoids 443–520 (Raven Press, New York, 1994). Google Scholar
Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J.10, 955–960 (1996). Article Google Scholar
He, L.-Z., Merghoub, T. & Pandolfi, P.P. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene18, 5278–5292 (1999). ArticleCASPubMed Google Scholar
Borden, K.L.B. et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J.14, 1532–1541 (1995). ArticleCASPubMedPubMed Central Google Scholar
Perez, A. et al. PML/RAR homodimers: distinct DNA binding properties and heteromeric interactions with RAR. EMBO J.12, 3171–3182 (1993). ArticleCASPubMedPubMed Central Google Scholar
Fagioli, M. et al. Identification of various PML gene isoforms and characterization of their origin and expression pattern. Oncogene7, 1083–1091 (1992). CASPubMed Google Scholar
Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P.S. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am. J. Hum. Genet.63, 297–304 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gaboli, M., Gandini, D., Delva, L., Wang, Z.G. & Pandolfi, P.P. Acute promyelocytic leukemia as a model for cross-talk between interferon and retinoic acid pathways: from molecular biology to clinical applications. Leuk. Lymphoma30, 11–22 (1998). ArticleCASPubMed Google Scholar
Mu, Z.M., Chin, K.V., Liu, J.H., Lozano, G. & Chang, K.S. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol. Cell. Biol.14, 6858–6867 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z.G. et al. Role of PML in cell growth and the retinoic acid pathway. Science279, 1547–1551 (1998). ArticleCASPubMed Google Scholar
Wang, Z.-G. et al. Pml is essential for multiple apoptotic pathways. Nature Genet.20, 266–271 (1998). ArticleCASPubMed Google Scholar
Miki, T. et al. Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. Proc. Natl Acad. Sci. USA88, 5167–5171 (1991). ArticleCASPubMedPubMed Central Google Scholar
Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J.14, 2020–2033 (1995). ArticleCASPubMedPubMed Central Google Scholar
Klugbauer, S. & Rabes, H.M. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene18, 4388–4393 (1999). ArticleCASPubMed Google Scholar
vom Baur, E. et al. Differential ligand dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J.15, 110–124 (1995). Article Google Scholar
de Thé, H., Vivanco-Ruiz, M.d.M., Tiollais, P., Stunnenberg, H. & Dejean, A. Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature343, 177–180 (1990). ArticlePubMed Google Scholar
Rachez, C. et al. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev.12, 1787–1800 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature398, 824–828 (1999). ArticleCASPubMed Google Scholar
Näär, A.M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature398, 828–832 (1999). ArticlePubMed Google Scholar
Fondell, J.D., Ge, H. & Roeder, R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA93, 8329–8333 (1996). ArticleCASPubMedPubMed Central Google Scholar
Chakravati, D. et al. Role of CBP/P300 in nuclear receptor signalling. Nature383, 99–103 (1996). Article Google Scholar
Bannister, A.J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature384, 641–643 (1996). ArticleCASPubMed Google Scholar
LaMorte, V.J., Dyck, J.A., Ochs, R.L. & Evans, R.M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc. Natl Acad. Sci. USA95, 4991–4996 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fagioli, M. et al. Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene16, 2905–2913 (1998). ArticleCASPubMed Google Scholar
Vallian, S. et al. Modulation of Fos-mediated AP-1 transcription by the promyelocytic leukemia protein. Oncogene16, 2843–2853 (1998). ArticleCASPubMed Google Scholar
Vallian, S., Chin, K.V. & Chang, K.S. The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol. Cell. Biol.18, 7147–7156 (1998). ArticleCASPubMedPubMed Central Google Scholar
Alcalay, M. et al. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol. Cell. Biol.18, 1084–1093 (1998). ArticleCASPubMedPubMed Central Google Scholar
Guiochon-Mantel, A. et al. Effect of PML and PML-RAR on the transactivation properties and subcellular distribution of steroid hormone receptors. Mol. Endocrinol.9, 1791–1803 (1995). CASPubMed Google Scholar
Liu, M., Iavarone, A. & Freedman, L.P. Retinoid induction of U937 cell differentiation: transcriptional activation of the human p21WAF1/CIP1 gene by retinoic acid receptor. J. Biol. Chem.271, 31723–31728 (1996). ArticleCASPubMed Google Scholar
Pomponi, F. et al. Retinoids irreversibly inhibit in vitro growth of Epstein-Barr virus-immortalized B lymphocytes. Blood88, 3147–3159 (1996). CASPubMed Google Scholar
Schüle, R. et al. Retinoic acid is a negative regulator of AP-1-responsive genes. Proc. Natl Acad. Sci. USA88, 6092–6096 (1991). ArticlePubMedPubMed Central Google Scholar
Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell85, 403–414 (1996). ArticleCASPubMed Google Scholar
Huang, C. et al. Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proc. Natl Acad. Sci. USA94, 5826–5830 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nason-Burchenal, K. et al. Interferon augments PML and PML/RARα expression in normal meyloid and acute promyelocytic cells and cooperates with all-trans retinoic acid to induce maturation of a retinoid resistant promyelocytic cell line. Blood88, 3926–3936 (1996). CASPubMed Google Scholar
Flenghi, L. et al. Characterization of a new monoclonal antibody (PG-M3) directed against the aminoterminal portion of the PML gene product: immunocytochemical evidence for high expression of PML proteins on activated macrophages, endothelial cells, and epithelia. Blood85, 1871–1880 (1995). CASPubMed Google Scholar
de Thé, H., Marchio, A., Tiollais, P. & Dejean, A. Differential expression and ligand regulation of the retinoic acid receptor α and β genes. EMBO J.8, 429–433 (1989). ArticlePubMedPubMed Central Google Scholar
Vasios, G.W., Gold, J.D., Petkovitch, M., Chambon, P. & Gudas, L.J. A retinoic acid-responsive element is present in the 5′ flanking region of the laminin B1 gene. Proc. Natl Acad. Sci. USA86, 9099–9103 (1989). ArticleCASPubMedPubMed Central Google Scholar
Manshouri, T. et al. Downregulation of RARα in mice by antisense transgene leads to a compensatory increase in RARβ and RARα and development of lymphoma. Blood89, 2507–2515 (1997). CASPubMed Google Scholar
David, G., Terris, B., Marchio, A., Lavau, C. & Dejean, A. The acute promyelocytic leukemia PML-RARα protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice. Oncogene14, 1547–1554 (1997). ArticleCASPubMed Google Scholar
He, L.Z. et al. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nature Genet.18, 126–135 (1998). ArticleCASPubMed Google Scholar
Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature391, 815–818 (1998). ArticleCASPubMed Google Scholar
Lin, R.J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature391, 811–814 (1998). ArticleCASPubMed Google Scholar
Boddy, M.N., Howe, K., Etkin, L.D., Solomon, E. & Freemont, P.S. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene13, 971–982 (1996). CASPubMed Google Scholar
Filvaroff, E., Stern, D.F. & Dotto, G.P. Tyrosine phosphorylation is an early and specific event involved in primary keratinocyte differentiation. Mol. Cell. Biol.10, 1164–1173 (1990). ArticleCASPubMedPubMed Central Google Scholar
Glass, C.K., Holloway, J.M., Devary, O.V. & Rosenfeld, M.G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell54, 313–323 (1988). ArticleCASPubMed Google Scholar
Jin, S. & Scotto, K.W. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol. Cell. Biol.18, 4377–4384 (1998). ArticleCASPubMedPubMed Central Google Scholar
Qin, X.Q., Chittenden, T., Livingston, D. & Kaelin, W.G. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev.6, 953–964 (1992). ArticleCASPubMed Google Scholar