CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans (original) (raw)
References
Fadok, V. A. & Henson, P. M. Apoptosis: getting rid of the bodies. Curr. Biol.8, R693–R695 (1998). ArticleCAS Google Scholar
Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: Past, present and future. Trends Genet.14, 410–416 (1998). ArticleCAS Google Scholar
Adams, J. M. & Cory, S. The Bcl-2 family: arbiters of cell survival. Science281, 322–326 (1998). Article Google Scholar
Hedgecock, E. M., Sulston, J. E. & Thomson, J. N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans.Science220, 1277–1279 (1983). ArticleCAS Google Scholar
Ellis, R. E., Jacobson, D. M. & Horvitz, H. R. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics129, 79–94 (1991). CASPubMedPubMed Central Google Scholar
Wu, Y. C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature392, 501–504 (1998). ArticleCAS Google Scholar
Liu, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell93, 961–972 (1998). ArticleCAS Google Scholar
Wu, Y. C. & Horvitz, H. R. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell93, 951–960 (1998). ArticleCAS Google Scholar
Hasegawa, H. et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell Biol.16, 1770–1776 (1996). ArticleCAS Google Scholar
Erickson, M., Galletta, B. J. & Abmayr, S. M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J. Cell Biol.138, 589–603 (1997). ArticleCAS Google Scholar
Kimble, J. & Hirsh, D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans.Dev. Biol. 70, 396–417 (1979). ArticleCAS Google Scholar
The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science282, 2012–2018 (1998).
Matsuda, M. et al. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell Biol.12, 3482–3489 (1992). ArticleCAS Google Scholar
Mayer, B. J., Hamaguchi, M. & Hanafusa, H. A novel viral oncogene with structural similarity to phospholipase C. Nature332, 272–275 (1988). ArticleCAS Google Scholar
Kiyokawa, E., Hashimoto, Y., Kurata, T., Sugimura, H. & Matsuda, M. Evidence that DOCK180 up-regulates signals from the CrkII-p130(Cas) complex. J. Biol. Chem.273, 24479–24484 (1998). ArticleCAS Google Scholar
Klemke, R. L. et al. CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J. Cell Biol.140, 961–972 (1998). ArticleCAS Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature391, 806–811 (1998). ArticleCAS Google Scholar
Imaizumi, T. et al. Mutant mice lacking crk-II caused by the gene trap insertional mutagenesis: crk-II is not essential for embryonic development. Biochem. Biophys. Res. Commun.266, 569–574 (1999). ArticleCAS Google Scholar
ten Hoeve, J., Morris, C., Heisterkamp, N. & Groffen, J. Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene8, 2469–2474 (1993). CASPubMed Google Scholar
Alfonso, A., Grundahl, K., Duerr, J. S., Han, H. P. & Rand, J. B. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science261, 617–619 (1993). ArticleCAS Google Scholar
Li, W., Herman, R. K. & Shaw, J. E. Analysis of the Caenorhabditis elegans axonal guidance and outgrowth gene unc-33. Genetics132, 675–689 (1992). CASPubMedPubMed Central Google Scholar
Chen, W., Lim, H. H. & Lim, L. A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans.J. Biol. Chem.268, 320–324 (1993). CASPubMed Google Scholar
Van Aelst, L. & D"Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev.11, 2295–2322 (1997). ArticleCAS Google Scholar
Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science282, 1717–1721 (1998). ArticleCAS Google Scholar
Massol, P., Montcourrier, P., Guillemot, J. C. & Chavrier, P. Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J.17, 6219–6229 (1998). ArticleCAS Google Scholar
Kiyokawa, E. et al. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev.12, 3331–3336 (1998). ArticleCAS Google Scholar
Nolan, K. M. et al. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev.12, 3337–3342 (1998). ArticleCAS Google Scholar
Li, L. & Cohen, S. N. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell85, 319–329 (1996). ArticleCAS Google Scholar
Spieth, J., Brooke, G., Kuersten, S., Lea, K. & Blumenthal, T. Operons in C. elegans: polycistronic mRNA precursors are processed by _trans_-splicing of SL2 to downstream coding regions. Cell73, 521–532 (1993). ArticleCAS Google Scholar
Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem.65, 241–269 (1996). ArticleCAS Google Scholar
Reiss, Y., Stradley, S. J., Gierasch, L. M., Brown, M. S. & Goldstein, J. L. Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase. Proc. Natl Acad. Sci. USA88, 732–736 (1991). ArticleCAS Google Scholar
Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature349, 117–127 (1991). ArticleCAS Google Scholar
Sugihara, K. et al. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene17, 3427–3433 (1998). ArticleCAS Google Scholar
Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development126, 1011–1022 (1999). CASPubMed Google Scholar
Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell84, 359–369 (1996). ArticleCAS Google Scholar
Platt, N., da Silva, R. P. & Gordon, S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol.8, 365–372 (1998). ArticleCAS Google Scholar
Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J.10, 3959–3970 (1991). ArticleCAS Google Scholar
Bloom, L. & Horvitz, H. R. The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation. Proc. Natl Acad. Sci. USA94, 3414–3419 (1997). ArticleCAS Google Scholar
Krause, M. & Hirsh, D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell49, 753–761 (1987). ArticleCAS Google Scholar