To be or not to be in the nucleolus (original) (raw)

References

  1. Kaffman, A. & O’Shea, E. K. Regulation of nuclear localization: a key to a door. Annu. Rev. Cell Dev. Biol. 15, 291–339 (1999).
    Article CAS Google Scholar
  2. Görlich, D, & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).
    Article Google Scholar
  3. Tomoda, K., Kubota, Y. & Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27/Kip1 is instigated by Jab1. Nature 398, 160–165 (1999).
    Article CAS Google Scholar
  4. Kaffman, A., Rank, N. M., O’Neill, E. M., Huang, L. S. & O’Shea, E. K. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396, 482–486 (1998).
    Article CAS Google Scholar
  5. Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172–175 (1999).
    Article CAS Google Scholar
  6. Zhu, J. & McKeon, F. NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398, 256–260 (1999).
    Article CAS Google Scholar
  7. Topham, M. K., Bunting, M., Zimmerman, G. A., McIntyre, T. M., Blackshear, P. J. & Prescott, S. M. Protein kinase C regulates the nuclear localization of diacylglycerol kinase-zeta. Nature 394, 697–700 (1998).
    Article CAS Google Scholar
  8. Spector, D. L. Macromolecular domains within the cell nucleus. Annu. Rev. Cell Biol. 9, 265–315 (1993).
    Article CAS Google Scholar
  9. Leonhardt, H. & Cardoso, M. C. Targeting and association of proteins with functional domains in the nucleus: the insoluble solution. Int. Rev. Cytol. 162 B, 303–335 (1995).
    Google Scholar
  10. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998).
    Article CAS Google Scholar
  11. Hadjiolov, A. A. The Nucleolus and Ribosome Biogenesis. Cell Biology Monographs Vol. 12 (Springer Verlag, Wien/New York, 1985).
  12. Shaw, P. J. & Jordan, E. G. The nucleolus. Annu. Rev. Cell Dev. Biol. 11, 93–121 (1995).
    Article CAS Google Scholar
  13. Scheer, U. & Hock, R. Structure and function of the nucleolus. Curr. Opin. Cell Biol. 11, 385–390 (1999).
    Article CAS Google Scholar
  14. Tollervey, D., Lehtonen, H., Carmo-Fonseca, M. & Hurt, E. C. The small nucleolar RNP protein NOP 1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J. 10, 573–583 (1991).
    Article CAS Google Scholar
  15. Moy, T. I. & Silver, P. A. Nuclear export of the small ribosomal subunit requires the Ran-GTPase cycle and certain nucleoporins. Genes Dev. 13, 2118–2133 (1999).
    Article CAS Google Scholar
  16. Hurt, E., Hannus, S., Schmelzl, B., Lau, D., Tollervey, D. & Simos, G. A novel in vivo assay reveals inhibition of ribosomal nuclear export in Ran-cycle and nucleoporin mutants. J. Cell Biol. 144, 389–401 (1999).
    Article CAS Google Scholar
  17. Mélèse, T. & Xue, Z. The nucleolus: an organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 7, 319–324 (1995).
    Article Google Scholar
  18. Léger-Silvestre, I., Noaillac-Depeyre, J., Faubladier, M. & Gas, N. Structural and functional analysis of the nucleolus of the fission yeast Schizosaccharomyces pombe. Eur. J. Cell Biol. 72, 13–23 (1997).
    PubMed Google Scholar
  19. Léger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. & Gas, N. Functional compartmentalization of the nucleolus in the budding yeast Saccharomyces cerevisiae. Chromosoma 108, 103–113 (1999).
    Article Google Scholar
  20. Scheer, U. & Weisenberger, D. The nucleolus. Curr. Opin. Cell Biol. 6, 354–359 (1994).
    Article CAS Google Scholar
  21. Nierras, C. R., Liebman, S. W. & Warner, J. R. Does Saccharomyces need an organized nucleolus? Chromosoma 105, 444–451 (1997).
    CAS PubMed Google Scholar
  22. Oakes, M., Aris, J. P., Brockenbrough, J. S., Wai, H., Vu, L. & Nomura, M. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J. Cell Biol. 143, 23–34 (1998).
    Article CAS Google Scholar
  23. Trumtel, S., Léger-Silvestre, I., Gleizes, P.-E., Teulières, F. & Gas, N. Assembly and functional organization of the nucleolus: ultrastructural analysis of Saccharomyces cerevisiae mutants. Mol. Biol. Cell (in the press).
  24. Woolford, J. L., & Warner, J. R. The ribosome and its synthesis. In The Molecular and Cellular Biology of the Yeast Saccharomyces, (eds Broach, J.R., Pringle, J.R. & Jones, E.W.) 587-626 (Cold Spring Harbor Laboratory Press, New York, 1991).
  25. Cockell, M., & Gasser, S. M. Nuclear compartments and gene regulation. Curr. Opin. Genet. Dev. 9, 199–205 (1999).
    Article CAS Google Scholar
  26. Gotta, M., Strahl-Bolsinger, S., Renauld, H., Laroche, T., Kennedy, B. K., Grunstein, M. & Gasser, S. M. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16, 3245–3255 (1997).
    Article Google Scholar
  27. Lustig, A. J. Mechanisms of silencing in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 8, 233–239 (1998).
    Article CAS Google Scholar
  28. Straight, A. F., Shou, W., Dowd, G. J., Turck, C. W., Deshaies, R. J., Johnson, A. D. & Moazed, D. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245–256 (1999).
    Article CAS Google Scholar
  29. Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328 (1998).
    Article CAS Google Scholar
  30. Pluta, A. F., Mackay, A. M., Ainsztein, A. M., Goldberg, I. G. & Earnshaw, W. C. The centromere: hub of chromosomal activities. Science 270, 1591–1594 (1995).
    Article CAS Google Scholar
  31. Dammann, R., Lucchini, R., Koller, T. & Sogo, J. M. Transcription in the yeast rDNA locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol. Cell. Biol. 15, 5294–5303 (1995).
    Article CAS Google Scholar
  32. Brachmann, C. B., Sherman, J. M., Devine, S. E., Cameron, E. E., Pillus, L. & Boeke, J. D. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888–2902 (1995).
    Article CAS Google Scholar
  33. Frye, R. A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).
    Article CAS Google Scholar
  34. Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735–745 (1999).
    Article CAS Google Scholar
  35. Imai, S.-I., Armstrong, C. M., Kaeberlein, M. & Guarante, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).
    Article CAS Google Scholar
  36. Perrin, L., Romby, P., Laurenti, P., Bérenger, H., Kallenbach, S., Bourbon, H.-M. & Pradel, J. The Drosophila modifier of variegation modulo gene product binds specific RNA sequences at the nucleolus and interacts with DNA and chromatin in a phosphorylation-dependent manner. J. Biol. Chem. 274, 6315–6323 (1999).
    Article CAS Google Scholar
  37. Dietzel, S., Niemann, H., Brückner, B., Maurange, C. & Paro, R. The nuclear distribution of Polycomb during Drosophila melanogaster development shown with a GFP fusion protein. Chromosoma 108, 83–94 (1999).
    Article CAS Google Scholar
  38. Bridger, J. M., Kill, I. R. & Lichter, P. Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosome Res. 6, 13–24 (1998).
    Article CAS Google Scholar
  39. Jacobson, M. R., Cao, L.-G., Wang, Y.-L. & Pederson, T. Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J. Cell Biol. 131, 1649–1658 (1995).
    Article CAS Google Scholar
  40. Sinclair, D. A. & Guarante, L. Extrachromosomal rDNA circles: a cause of aging in yeast. Cell 91, 1033–1042 (1997).
    Article CAS Google Scholar
  41. Kennedy, B.K. et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89, 381–391 (1997).
    Article CAS Google Scholar
  42. Park, P. U., Defossez, P.-A., & Guarente, L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 3848–3856 (1999).
    Article CAS Google Scholar
  43. Epstein, C. J., Martin, G. M., Schultz, A. L. & Motulsky, A. G. Werner’s syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45, 177–221 (1966).
    Article CAS Google Scholar
  44. Grey, M. D., Wang, L., Youssoufian, H., Martin, G. M. & Oshima, J. Werner’syndrome helicase is localized to transcriptionally active nucleoli of cycling cells. Exp. Cell Res. 242, 487–494 (1999).
    Article Google Scholar
  45. Marciniak, R. A., Lombard, D. B., Johnson, F. B. & Guarante, L. Nucleolar localization of the Werner syndrome protein in human cells. Proc. Natl Acad. Sci. USA 95, 6887–6892 (1998).
    Article CAS Google Scholar
  46. Shiratori, M. et al. Detection by epitope-defined monoclonal antibodies of Werner DNA helicases in the nucleoplasm and their upregulation by cell transformation and immortalization. J. Cell Biol. 144, 1–9 (1999).
    Article CAS Google Scholar
  47. Paule, M. R. Transcription of Ribosomal RNA Genes by Eukaryotic RNA Polymerase I (Springer-Verlag, Berlin/Heidelberg, 1998).
  48. Rose, K. M., Szopa, J., Han, F.-S., Cheng, Y.-C., Richter, A. & Scheer, U. Association of DNA topoisomerase I and RNA polymerase I: a possible role for topoisomerase I in ribosomal gene transcription. Chromosoma 96, 411–416 (1988).
    Article CAS Google Scholar
  49. Vogelauer, M. & Camilloni, G. Site-specific in vivo cleavages by DNA topoisomerase I in the regulatory regions of the 35 S rRNA in Saccharomyces cerevisiae are transcription independent. J. Mol. Biol. 293, 19–28 (1999).
    Article CAS Google Scholar
  50. Banditt, M., Koller, T. & Sogo, J. Transcriptional activity and chromatin structure of enhancer-deleted rRNA genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4953–4960 (1999).
    Article CAS Google Scholar
  51. Milkereit, P. & Tschochner, H. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J. 17, 3692–3703 (1998).
    Article CAS Google Scholar
  52. Heix, J., Vente, A., Voit, R., Budde, A., Michaelidis, T. M. & Grummt, I. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J. 17, 7373–7381 (1998).
    Article CAS Google Scholar
  53. Tuan, J. C., Zhai, W. & Comai, L. Recruitment of TATA-binding protein-TAFI complex SL1 to the human ribosomal DNA promoter is mediated by the carboxy-terminal activation domain of upstream binding factor (UBF) and is regulated by UBF phosphorylation. Mol. Cell. Biol. 19, 2872–2879 (1999).
    Article CAS Google Scholar
  54. Voit, R., Hoffmann, M. & Grummt, I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 18, 1891–1899 (1999).
    Article CAS Google Scholar
  55. Maxwell, E. S. & Fournier, M. J. The small nucleolar RNAs. Annu. Rev. Biochem. 35, 897–934 (1995).
    Article Google Scholar
  56. Tollervey, D. & Kiss, T. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9, 337–342 (1997).
    Article CAS Google Scholar
  57. Smith, C. M. & Steitz, J. A. Sno storm in the nucleolus: new roles for myriad small RNPs Cell 89, 669–672 (1997).
    Article CAS Google Scholar
  58. Olson, M. O., Dundr, M. & Szebeni, A. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 10, 189–196 (2000).
    Article CAS Google Scholar
  59. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′–5′ exoribonuclease activities. Cell 91, 457–466 (1997).
    Article CAS Google Scholar
  60. Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E. & Tollervey, D. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399–5410 (1999).
    Article CAS Google Scholar
  61. Fomproix, N. & Hernandez-Verdun, D. Effects of anti-PM-Scl100 (Rrp6p exonuclease) antibodies on prenucleolar body dynamics at the end of mitosis. Exp. Cell Res. 251, 452–464 (1999).
    Article CAS Google Scholar
  62. Pederson, T. & Politz, J. C. The nucleolus and the four ribonucleoproteins of translation. J. Cell Biol. 148, 1091–1095 (2000).
    Article CAS Google Scholar
  63. Dechampesme, A.-M., Koroleva, O., Léger-Silvestre, I., Gas, N. & Camier, S. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J. Cell Biol. 145, 1369–1380 (1999).
    Article CAS Google Scholar
  64. Wolin, S. L. & Matera, G. The trials and travels of tRNA. Genes Dev. 13, 1–10 (1999).
    Article CAS Google Scholar
  65. Tycowski, K. T., You, Z. H., Graham, P. J. & Steitz, J. A. Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol. Cell 2, 629–638 (1998).
    Article CAS Google Scholar
  66. Ganot, P., Jády, B. E., Bortolin, M.-L., Darzacq, X. & Kiss, T. Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol. Cell. Biol. 19, 6906–6917 (1999).
    Article CAS Google Scholar
  67. Visintin, R., Hwang, E. S. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818–823 (1999).
    Article CAS Google Scholar
  68. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999).
    Article CAS Google Scholar
  69. Deshaies, R. J. Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Curr. Opin. Genet. Dev. 7, 7–16 (1997).
    Article CAS Google Scholar
  70. Morgan, D. O. Cyclin-dependent kinases: engines, clocks and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).
    Article CAS Google Scholar
  71. Visintin, R., Craig, K., Hwang, E. S., Prinz, S., Tyers, M. & Amon, A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998).
    Article CAS Google Scholar
  72. Zachariae, W, Schwab, M, Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoter complex. Science 282, 1721–1724 (1998).
    Article CAS Google Scholar
  73. San-Segundo, P. A. & Roeder, G. S. Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97, 313–324 (1999).
    Article CAS Google Scholar
  74. Pederson, T. Growth factors in the nucleolus? J. Cell Biol. 143, 279–281 (1998).
    Article CAS Google Scholar
  75. Zatsepina, O. V., Rousselet, A., Chan, P. K., Olson, M. O., Jordan, E. G & Bornens, M. The nucleolar phosphoprotein B23 redistributes in part to the spindle poles during mitosis. J. Cell Sci. 112, 455–466 (1999).
    CAS PubMed Google Scholar
  76. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).
    Article CAS Google Scholar
  77. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupts its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Cell 3, 579–591 (1999).
    CAS Google Scholar
  78. Tao, W. & Levine, A. J. P 19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA 96, 6937–6941 (1999).
    Article CAS Google Scholar
  79. Lohrun, M. A. E., Ashcroft, M., Kubbutat, M. H. G. & Vousden, K.H. Identification of a cryptic nucleolar-localization signal in MDM2. Nature Cell Biol. 2, 179–181 (2000).
    Article Google Scholar
  80. Kamijo, T. et al.Tumour suppression at the mouse INK4a locus mediated by the alternative reading frame product p19 ARF. Cell 91, 649–659 (1997).
    Article CAS Google Scholar

Download references