A DNA-fuelled molecular machine made of DNA (original) (raw)
References
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature382, 607– 609 (1996). ArticleADSCAS Google Scholar
Alivisatos, A. P. et al. Organization of ‘nanocrystal groups’ using DNA. Nature382, 609–611 (1996). ArticleADSCAS Google Scholar
Coffer, J. L. et al. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl. Phys. Lett.69, 3851–3853 (1996). ArticleADSCAS Google Scholar
Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature391, 775–778 ( 1998). ArticleADSCAS Google Scholar
Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature394, 539–544 (1998). ArticleADSCAS Google Scholar
Mao, C., Sun, W. & Seeman, N. C. Assembly of Borromean rings from DNA. Nature386, 137–138 ( 1997). ArticleADSCAS Google Scholar
Chen, J. & Seeman, N. C. Synthesis from DNA of a group with the connectivity of a cube. Nature350, 631–633 (1991). ArticleADSCAS Google Scholar
Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B-Z transition of DNA. Nature397 , 144–146 (1999). ArticleADSCAS Google Scholar
Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. Photoregulation of the formation and dissociation of a DNA duplex by using the cis-trans isomerization of azobenzene. Angew. Chem. Int. Edn Engl.38, 2393– 2395 (1999). ArticleCAS Google Scholar
Porta, H. & Lizardi, P. M. An allosteric hammerhead ribozyme. Biotechnology13, 161– 164 (1995). CASPubMed Google Scholar
Tang, J. & Breaker, R. R. Rational design of allosteric ribozymes. Chem. Biol.4, 453– 459 (1997). ArticleCAS Google Scholar
Araki, M., Okuno, O., Hara, Y. & Sugiura, Y. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res.26, 3379–3384 (1998). ArticleCAS Google Scholar
Robertson, M. P. & Ellington, A. D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nature Biotechnol.17, 62– 66 (1999). ArticleCAS Google Scholar
Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA groups by using magnetic beads. Science258, 1122–1126 (1992). ArticleADSCAS Google Scholar
Manning, G. S. A procedure for extracting persistence lengths from light-scattering data on intermediate molecular weight DNA. Biopolymers20 , 1751–1755 (1981). ArticleCAS Google Scholar
Smith, S. B., Yujia, C. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA groups. Science271, 795–799 (1996). ArticleADSCAS Google Scholar
Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA58, 719 –726 (1967). ArticleADSCAS Google Scholar
Heller, M. J. & Morrison, L. E. in Rapid Detection and Identification of Infectious Agents (eds Kingsbury, D. T. & Falkow, S.) 245 –256 (Academic, New York, 1985). Google Scholar
SantaLucia, J. Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA95, 1460–1465 ( 1998). ArticleADSCAS Google Scholar
Record, M. T. Jr, Anderson, C. F. & Lohman, T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys.11, 103– 178 (1978). ArticleCAS Google Scholar
Bockelmann, U., Essevaz-Roulet, B. & Heslot, F. Molecular stick-slip motion revealed by opening DNA with piconewton forces. Phys. Rev. Lett.79, 4489–4492 (1997). ArticleADSCAS Google Scholar
Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature365, 721–727 (1993). ArticleADSCAS Google Scholar
Kuo, S. C. & Sheetz, M. P. Force of single kinesin groups measured with optical tweezers. Science260, 232–234 (1993). ArticleADSCAS Google Scholar
Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin group mechanics: piconewton forces and nanometre steps. Nature368, 113– 119 (1994). ArticleADSCAS Google Scholar
Ishijima, A. et al. Single-group analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun.199, 1057 –1063 (1994). ArticleCAS Google Scholar
Green, C. & Tibbetts, C. Reassociation rate limited displacement of DNA strands by branch migration. Nucleic Acids Res.9, 1905–1918 (1981). ArticleCAS Google Scholar
Lee, C. S., Davis, R. W. & Davidson, N. A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J. Mol. Biol.48, 1– 22 (1970). ArticleCAS Google Scholar
Wetmur, J. G. & Davidson, N. Kinetics of renaturation of DNA. J. Mol. Biol.31, 349– 370 (1968). ArticleCAS Google Scholar
Radding, C. M., Beattie, K. L., Holloman, W. K. & Wiegand, R. C. Uptake of homologous single-stranded fragments by superhelical DNA: IV branch migration. J. Mol. Biol.116, 825– 839 (1977). ArticleCAS Google Scholar
Turberfield, A. J., Yurke, B. & Mills, A. P. Jr Coded self-assembly of DNA nanostructures. Bull. Am. Phys. Soc.44, 1711 (1999). Google Scholar