A DNA-fuelled molecular machine made of DNA (original) (raw)

References

  1. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607– 609 (1996).
    Article ADS CAS Google Scholar
  2. Alivisatos, A. P. et al. Organization of ‘nanocrystal groups’ using DNA. Nature 382, 609–611 (1996).
    Article ADS CAS Google Scholar
  3. Coffer, J. L. et al. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl. Phys. Lett. 69, 3851–3853 (1996).
    Article ADS CAS Google Scholar
  4. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 ( 1998).
    Article ADS CAS Google Scholar
  5. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).
    Article ADS CAS Google Scholar
  6. Mao, C., Sun, W. & Seeman, N. C. Assembly of Borromean rings from DNA. Nature 386, 137–138 ( 1997).
    Article ADS CAS Google Scholar
  7. Chen, J. & Seeman, N. C. Synthesis from DNA of a group with the connectivity of a cube. Nature 350, 631–633 (1991).
    Article ADS CAS Google Scholar
  8. Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B-Z transition of DNA. Nature 397 , 144–146 (1999).
    Article ADS CAS Google Scholar
  9. Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. Photoregulation of the formation and dissociation of a DNA duplex by using the cis-trans isomerization of azobenzene. Angew. Chem. Int. Edn Engl. 38, 2393– 2395 (1999).
    Article CAS Google Scholar
  10. Porta, H. & Lizardi, P. M. An allosteric hammerhead ribozyme. Biotechnology 13, 161– 164 (1995).
    CAS PubMed Google Scholar
  11. Tang, J. & Breaker, R. R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453– 459 (1997).
    Article CAS Google Scholar
  12. Araki, M., Okuno, O., Hara, Y. & Sugiura, Y. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26, 3379–3384 (1998).
    Article CAS Google Scholar
  13. Robertson, M. P. & Ellington, A. D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nature Biotechnol. 17, 62– 66 (1999).
    Article CAS Google Scholar
  14. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA groups by using magnetic beads. Science 258, 1122–1126 (1992).
    Article ADS CAS Google Scholar
  15. Manning, G. S. A procedure for extracting persistence lengths from light-scattering data on intermediate molecular weight DNA. Biopolymers 20 , 1751–1755 (1981).
    Article CAS Google Scholar
  16. Smith, S. B., Yujia, C. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA groups. Science 271, 795–799 (1996).
    Article ADS CAS Google Scholar
  17. Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA 58, 719 –726 (1967).
    Article ADS CAS Google Scholar
  18. Heller, M. J. & Morrison, L. E. in Rapid Detection and Identification of Infectious Agents (eds Kingsbury, D. T. & Falkow, S.) 245 –256 (Academic, New York, 1985).
    Google Scholar
  19. SantaLucia, J. Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA 95, 1460–1465 ( 1998).
    Article ADS CAS Google Scholar
  20. Record, M. T. Jr, Anderson, C. F. & Lohman, T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11, 103– 178 (1978).
    Article CAS Google Scholar
  21. Bockelmann, U., Essevaz-Roulet, B. & Heslot, F. Molecular stick-slip motion revealed by opening DNA with piconewton forces. Phys. Rev. Lett. 79, 4489–4492 (1997).
    Article ADS CAS Google Scholar
  22. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).
    Article ADS CAS Google Scholar
  23. Kuo, S. C. & Sheetz, M. P. Force of single kinesin groups measured with optical tweezers. Science 260, 232–234 (1993).
    Article ADS CAS Google Scholar
  24. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin group mechanics: piconewton forces and nanometre steps. Nature 368, 113– 119 (1994).
    Article ADS CAS Google Scholar
  25. Ishijima, A. et al. Single-group analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun. 199, 1057 –1063 (1994).
    Article CAS Google Scholar
  26. Green, C. & Tibbetts, C. Reassociation rate limited displacement of DNA strands by branch migration. Nucleic Acids Res. 9, 1905–1918 (1981).
    Article CAS Google Scholar
  27. Lee, C. S., Davis, R. W. & Davidson, N. A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J. Mol. Biol. 48, 1– 22 (1970).
    Article CAS Google Scholar
  28. Wetmur, J. G. & Davidson, N. Kinetics of renaturation of DNA. J. Mol. Biol. 31, 349– 370 (1968).
    Article CAS Google Scholar
  29. Radding, C. M., Beattie, K. L., Holloman, W. K. & Wiegand, R. C. Uptake of homologous single-stranded fragments by superhelical DNA: IV branch migration. J. Mol. Biol. 116, 825– 839 (1977).
    Article CAS Google Scholar
  30. Turberfield, A. J., Yurke, B. & Mills, A. P. Jr Coded self-assembly of DNA nanostructures. Bull. Am. Phys. Soc. 44, 1711 (1999).
    Google Scholar

Download references