Repressor activity of Headless/Tcf3 is essential for vertebrate head formation (original) (raw)
References
Nieto, M. A. Reorganizing the organizer 75 years on. Cell98, 417–425 (1999). ArticleCAS Google Scholar
Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell88, 747–756 (1997). ArticleCAS Google Scholar
Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature391, 357–362 (1998). ArticleADSCAS Google Scholar
Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature397, 707–710 (1999). ArticleADSCAS Google Scholar
Christian, J. L. & Moon, R. T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev.7, 13–28 (1993). ArticleCAS Google Scholar
Hoppler, S., Brown, J. D. & Moon, R. T. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev.10, 2805–2817 (1996). ArticleCAS Google Scholar
Kelly, G. M., Greenstein, P., Erezyilmaz, D. F. & Moon, R. T. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development121, 1787–1799 (1995). CASPubMed Google Scholar
Niehrs, C. Head in the WNT: the molecular nature of Spemann's head organizer. Trends Genet.15, 314–319 (1999). ArticleCAS Google Scholar
Molenaar, M. et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell86, 391–399 (1996). ArticleCAS Google Scholar
Pelegri, F. & Maischein, H. M. Function of zebrafish beta-catenin and TCF-3 in dorsoventral patterning. Mech. Dev.77 , 63–74 (1998). ArticleCAS Google Scholar
Artinger, K. B., Chitnis, A. B., Mercola, M. & Driever, W. Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons. Development126, 3969–3979 (1999). CASPubMed Google Scholar
Kim, C. H. et al. Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci. Lett.216, 109– 112 (1996). ArticleCAS Google Scholar
Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nature Genet.19, 125–133 (1998). ArticleCAS Google Scholar
Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. & Kawakami, K. Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development125, 2973–2982 ( 1998). CASPubMed Google Scholar
Mathers, P. H., Grinberg, A., Mahon, K. A. & Jamrich, M. The Rx homeobox gene is essential for vertebrate eye development. Nature387, 603–607 ( 1997). ArticleADSCAS Google Scholar
Hashimoto, H. et al. Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev. Biol.217, 138 –152 (2000). ArticleCAS Google Scholar
Gates, M. A. et al. A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res.9, 334–347 ( 1999). CASPubMed Google Scholar
Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol.4, 189– 202 (1994). ArticleCAS Google Scholar
van de Wetering, M. et al. The human T cell transcription factor-1 gene. Structure, localization, and promoter characterization. J. Biol. Chem.267, 8530–8536 (1992). CASPubMed Google Scholar
Lin, R., Thompson, S. & Priess, J. R. pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell83, 599–609 (1995). ArticleCAS Google Scholar
van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell88, 789–799 (1997). ArticleCAS Google Scholar
Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature395, 604– 608 (1998). ArticleADSCAS Google Scholar
Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature395, 608–612 (1998). ArticleADSCAS Google Scholar
Brannon, M., Brown, J. D., Bates, R., Kimelman, D. & Moon, R. T. XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development. Development126, 3159–3170 (1999). CAS Google Scholar
Clevers, H. & van de Wetering, M. TCF/LEF factor earn their wings. Trends Genet.13, 485– 489 (1997). ArticleCAS Google Scholar
Moon, R. T., Brown, J. D. & Torres, M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet.13, 157– 162 (1997). ArticleCAS Google Scholar
McGrew, L. L., Takemaru, K., Bates, R. & Moon, R. T. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech. Dev.87, 21–32 (1999). ArticleCAS Google Scholar
Badiani, P., Corbella, P., Kioussis, D., Marvel, J. & Weston, K. Dominant interfering alleles define a role for c-Myb in T-cell development. Genes Dev.8, 770–782 (1994). ArticleCAS Google Scholar
Triezenberg, S. J., Kingsbury, R. C. & McKnight, S. L. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev.2, 718–729 ( 1988). ArticleCAS Google Scholar