Repressor activity of Headless/Tcf3 is essential for vertebrate head formation (original) (raw)

References

  1. Nieto, M. A. Reorganizing the organizer 75 years on. Cell 98, 417–425 (1999).
    Article CAS Google Scholar
  2. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).
    Article CAS Google Scholar
  3. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).
    Article ADS CAS Google Scholar
  4. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).
    Article ADS CAS Google Scholar
  5. Christian, J. L. & Moon, R. T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13–28 (1993).
    Article CAS Google Scholar
  6. Hoppler, S., Brown, J. D. & Moon, R. T. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev. 10, 2805–2817 (1996).
    Article CAS Google Scholar
  7. Kelly, G. M., Greenstein, P., Erezyilmaz, D. F. & Moon, R. T. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121, 1787–1799 (1995).
    CAS PubMed Google Scholar
  8. Niehrs, C. Head in the WNT: the molecular nature of Spemann's head organizer. Trends Genet. 15, 314–319 (1999).
    Article CAS Google Scholar
  9. Molenaar, M. et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).
    Article CAS Google Scholar
  10. Pelegri, F. & Maischein, H. M. Function of zebrafish beta-catenin and TCF-3 in dorsoventral patterning. Mech. Dev. 77 , 63–74 (1998).
    Article CAS Google Scholar
  11. Artinger, K. B., Chitnis, A. B., Mercola, M. & Driever, W. Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons. Development 126, 3969–3979 (1999).
    CAS PubMed Google Scholar
  12. Kim, C. H. et al. Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci. Lett. 216, 109– 112 (1996).
    Article CAS Google Scholar
  13. Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nature Genet. 19, 125–133 (1998).
    Article CAS Google Scholar
  14. Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. & Kawakami, K. Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125, 2973–2982 ( 1998).
    CAS PubMed Google Scholar
  15. Mathers, P. H., Grinberg, A., Mahon, K. A. & Jamrich, M. The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607 ( 1997).
    Article ADS CAS Google Scholar
  16. Hashimoto, H. et al. Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev. Biol. 217, 138 –152 (2000).
    Article CAS Google Scholar
  17. Gates, M. A. et al. A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res. 9, 334–347 ( 1999).
    CAS PubMed Google Scholar
  18. Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189– 202 (1994).
    Article CAS Google Scholar
  19. van de Wetering, M. et al. The human T cell transcription factor-1 gene. Structure, localization, and promoter characterization. J. Biol. Chem. 267, 8530–8536 (1992).
    CAS PubMed Google Scholar
  20. Lin, R., Thompson, S. & Priess, J. R. pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83, 599–609 (1995).
    Article CAS Google Scholar
  21. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).
    Article CAS Google Scholar
  22. Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604– 608 (1998).
    Article ADS CAS Google Scholar
  23. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).
    Article ADS CAS Google Scholar
  24. Brannon, M., Brown, J. D., Bates, R., Kimelman, D. & Moon, R. T. XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development. Development 126, 3159–3170 (1999).
    CAS Google Scholar
  25. Clevers, H. & van de Wetering, M. TCF/LEF factor earn their wings. Trends Genet. 13, 485– 489 (1997).
    Article CAS Google Scholar
  26. Moon, R. T., Brown, J. D. & Torres, M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157– 162 (1997).
    Article CAS Google Scholar
  27. McGrew, L. L., Takemaru, K., Bates, R. & Moon, R. T. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech. Dev. 87, 21–32 (1999).
    Article CAS Google Scholar
  28. Badiani, P., Corbella, P., Kioussis, D., Marvel, J. & Weston, K. Dominant interfering alleles define a role for c-Myb in T-cell development. Genes Dev. 8, 770–782 (1994).
    Article CAS Google Scholar
  29. Triezenberg, S. J., Kingsbury, R. C. & McKnight, S. L. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2, 718–729 ( 1988).
    Article CAS Google Scholar

Download references