Use of population isolates for mapping complex traits (original) (raw)
Puffenberger, E. G. et al. Identity-by-descent and association mapping of a recessive gene for Hirschspring disease on human chromosome 13q22. Hum. Mol. Genet.3, 1217–1225 ( 1994). ArticleCASPubMed Google Scholar
Puffenberger, E. G. et al. A missense mutation of the Endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell79, 1257– 1266 (1994).References1and2provide an early, beautiful example of how a complex disease can become a simple disease and how a population isolate can be used to dissect a phenotype. ArticleCASPubMed Google Scholar
Scott D. A. et al. Nonsyndromic autosomal recessive deafness is linked to the DFNBI locus in a large inbred Bedouin family from Israel. Am. J. Hum. Genet.57, 965–968 (1995). CASPubMedPubMed Central Google Scholar
Bollobas, B. Littlewood's Miscellany (Cambridge Univ. Press, Cambridge, 1988). Google Scholar
Cavalli-Sforza, L. The DNA revolution in population genetics. Trends Genet.14, 60–65 (1998). ArticleCASPubMed Google Scholar
Kidd, J. R. et al. Haplotypes and linkage disequilibrium at the phenylalanine hydroxylase locus, PAH, in a global, MH representation of populations. Am. J. Hum. Genet.66, 1882–1899 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sajantila, A. et al. Paternal and maternal linkages reveal a bottleneck in the founding of the Finnish population. Proc. Natl Acad. Sci. USA93, 12035–12039 (1996). ArticleCASPubMedPubMed Central Google Scholar
de la Chapelle, A & Wright F. A. Linkage disequilibrium mapping in isolate populations: The example of Finland revisited. Proc. Natl Acad. Sci. USA95, 12416– 12423 (1998). ArticleCASPubMedPubMed Central Google Scholar
Jorde, L. B. et al. Gene mapping in isolated populations: New roles for old friends? Hum. Hered.50, 57–65 (2000). ArticleCASPubMed Google Scholar
Varilo, T. et al. Linkage disequilibrium in isolated populations: Finland and a young sub–population of Kuusamo. Eur. J. Hum. Genet. (in the press).
Terwilliger, J. D., Zöllner, S., Laan, M. & Pääbo, S. Mapping in small populations with no demographic expansion. Hum. Hered.48, 138–154 ( 1998). ArticleCASPubMed Google Scholar
Peltonen, L. Positional cloning of disease genes: Advantages of genetic isolates. Hum. Hered.50, 66–75 ( 2000). ArticleCASPubMed Google Scholar
Peltonen, L., Jalanko, A. & Varilo, T. Molecular genetics of the Finnish disease heritage. Hum. Mol. Genet.8, 1913–1923 (1999). ArticleCASPubMed Google Scholar
Wright, A. F., Carothers, A. D. & Pirastu, M. Population choice in mapping genes for complex diseases . Nature Genet.23, 397– 404 (1999).Considers in some detail the advantages and disadvantages of various populations in mapping common disease genes. ArticleCASPubMed Google Scholar
Houwen, R. H. et al. Genome screening by searching for shared segments: Mapping a gene for benign recurrent intrahepatic cholestasis. Nature Genet.8, 380–386 ( 1994).Shows the power of the founder effect and population isolation in the search for a disease gene. Scanning for a haplotype signature in affected individuals can be used to localize the gene. ArticleCASPubMed Google Scholar
Nikali, K. et al. Random search for shared chromosomal regions: the assignment of a new hereditary ataxia locus. Am. J. Hum. Genet.56, 1088–1095 (1995). CASPubMedPubMed Central Google Scholar
Peltomaki, P. et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science260, 810– 812 (1993). ArticleCASPubMed Google Scholar
Pajukanta, P. et al. Linkage of familial combined hyperlipidaemia to chromosome 1q21–q23. Nature Genet.18, 369– 373 (1998). ArticleCASPubMed Google Scholar
Hanson, R. L. et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am. J. Hum. Genet.63, 1130–1138 ( 1998). ArticleCASPubMedPubMed Central Google Scholar
Collins, F. S., Guyer, M. S. & Charkravarti, A. Variations on a theme: cataloguing human DNA sequence variation. Science278, 1580– 1581 (1997).Lays out the rationale for the discovery and application of single nucleotide polymorphisms. ArticleCASPubMed Google Scholar
Kruglyak, L. Prospect for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet.22, 139– 144 (1999). ArticleCASPubMed Google Scholar
Zwick, M. E. et al. Characterizing human genomic variation and linkage disequililibrium in multiple 100kb genomic segments using large-scale, microarray–based SNP detection. Am. J. Hum. Genet.67, S22 (2000). Google Scholar
Nickerson, D. A. et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genet.19, 233– 240 (1998).Explores one human gene intensely for polymorphisms and linkage disequilibrium. This type of study is a forerunner of what will be done on a genome-wide basis. ArticleCASPubMed Google Scholar
Eaves, I. A. et al. The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nature Genet.25, 320– 323 (2000). ArticleCASPubMed Google Scholar
Taillon-Miller, P. et al. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nature Genet.25, 324–328 (2000). ArticleCASPubMed Google Scholar
Moehlke, K. L. et al. Marker–marker linkage disequilibrium extends beyond 1 cM on chromosome 20 in Finns. Am. J. Human Genet.67, S25 (2000). Google Scholar
Greenberg, D. A., Abreu, P. & Hodge, S. E. The power to detect linkage in complex disease by means of simple LOD-score analyses. Am. J. Hum. Genet.63 , 870–879 (1998). ArticleCASPubMedPubMed Central Google Scholar
Clerget-Darpoux, F., Bonaiti-Pellie, C. & Hochez, J. Effects of misspecifying genetic parameters in lod score analysis. Biometrics42, 393– 399 (1986). ArticleCASPubMed Google Scholar
Kruglyak, L., Daly, M. J., Reeve-Daly, M. P. & Lander, E. S. Parametric and nonparametric linkage analysis: A unified multipoint approach . Am. J. Hum. Genet.58, 1347– 1363 (1996). CASPubMedPubMed Central Google Scholar
Sobel, E. & Lange, K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker sharing statistics . Am. J. Hum. Genet.58, 1323– 1337 (1996). CASPubMedPubMed Central Google Scholar
Abreu, P. C., Greenberg, D. A. & Hodge, S. E. Direct power comparisons between simple lod scores and NPL scores for linkage analysis in complex diseases. Am. J. Hum. Genet.65, 847–857 (1999). ArticleCASPubMedPubMed Central Google Scholar
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996). Argues the case for association studies over linkage studies. ArticleCASPubMed Google Scholar
Terwilliger, J. D. & Ott, J. A haplotype-based 'haplotype relative risk' approach to detecting allelic associations. Hum. Hered.42, 337–346 (1992). ArticleCASPubMed Google Scholar
Spielman, R. S., McGinnis, R. E. & Ewens, W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet.52, 506–516 (1993). CASPubMedPubMed Central Google Scholar
Allison, D. B., Heo, M., Kaplan, N. & Martin, E. R. Sibling–based tests of linkage and association for quantitative traits. Am. J. Hum. Genet.64, 1754–1763 (1999). ArticleCASPubMedPubMed Central Google Scholar
Boehnke, M. & Langefeld, C. D. Genetic association mapping based on discordant sib pairs: the discordant-alleles test. Am. J. Hum. Genet.62, 950–961 (1998). ArticleCASPubMedPubMed Central Google Scholar
Spielman, R. S. & Ewens, W. J. A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am. J. Hum. Genet.62, 450– 458 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schaid, D. J. & Rowland, C. Use of parents, sibs, and unrelated controls for detection of associations between genetic markers and disease . Am. J. Hum. Genet.63, 1492– 1506 (1998). ArticleCASPubMedPubMed Central Google Scholar
Teng, J. & Risch, N. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases. II. Individual genotyping. Genome Res.9, 234–241 (1999). CASPubMed Google Scholar
Devlin, B., Risch, N. & Roeder, K. Disequilibrium mapping: composite likelihood for pairwise disequilibrium. Genomics36, 1– 16 (1996). ArticleCASPubMed Google Scholar
Kaplan, N. L. Hill, W. G. & Weir, B. S. Likelihood methods for locating disease genes in non-equilibrium populations. Am. J. Hum. Genet.56, 18– 32 (1995). CASPubMedPubMed Central Google Scholar
Lazzeroni, L. C. & Lange, K. A conditional inference framework for extending the transmission/disequilibrium test. Hum. Hered.48, 67–81 ( 1998). ArticleCASPubMed Google Scholar
McPeek, M. S. & Strahs, A. Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine scale genetic mapping. Am. J. Hum. Genet.65, 858– 875 (1999). ArticleCASPubMedPubMed Central Google Scholar
Terwilliger, J. D. A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am. J. Hum. Genet.56, 777–787 ( 1995). CASPubMedPubMed Central Google Scholar
Xiong, M. & Guo, S. W. Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am. J. Hum. Genet.60, 1513–1531 ( 1997). ArticleCASPubMedPubMed Central Google Scholar
Göring, H. H. H. & Terwilliger, J. D. Linkage analysis in the presence of errors IV: Joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. Am. J. Hum. Genet.66, 1310–1327 (2000). ArticlePubMedPubMed Central Google Scholar
Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell75, 1215– 1225 (1993). ArticleCASPubMed Google Scholar
Bronner, C. E. et al. Mutation in the DNA mismatch pair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature368, 258–261 (1994). ArticleCASPubMed Google Scholar
Sheffield, V. C., Stone, E. M. & Carmi, R. Use of isolated inbred human populations for identification of disease genes. Trends Genet.14, 391– 396 (1998). ArticleCASPubMed Google Scholar
Chataway, J. et al. The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen. Brain121, 1869–1887 ( 1998). ArticlePubMed Google Scholar
Castellani, L. W. et al. Mapping a gene for combined hyperlipidemia in a mutant mouse strain. Nature Genet.18, 374– 377 (1998). ArticleCASPubMed Google Scholar
Pei, W. et al. Support for linkage of familial combined hyperlipidemia to chromosome 1q21–q23 in Chinese and German families. Clin. Genet.57, 29–34 (2000). ArticleCASPubMed Google Scholar
Pajukanta, P. et al. Genomewide scan for familial combined hyperlipidemia genes in Finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. Am. J. Hum. Genet.64, 1453–1463 (1999). ArticleCASPubMedPubMed Central Google Scholar
Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet.62 , 1198–1211 (1998). ArticleCASPubMedPubMed Central Google Scholar
Amos, C. I. Robust variance-components approach for assessing genetic linkage in pedigrees . Am. J. Hum. Genet.54, 535– 543 (1994). CASPubMedPubMed Central Google Scholar
Blangero, J. & Almasy, L. Multipoint oligenic linkage analysis of quantitative traits. Genet. Epidemiol.14, 959–964 (1997). ArticleCASPubMed Google Scholar
Goldar, D. E. Multipoint analysis of human quantitative genetic variation. Am. J. Hum. Genet.47, 957–967 (1990). Google Scholar
Hoppers, J. L. & Mathews, J. D. Extensions to multivariate normal models for pedigree analysis. Ann. Hum. Genet.46, 373–383 ( 1982). Article Google Scholar
Schork, N. J. Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. Am. J. Hum. Genet.53, 1306–1319 ( 1993). CASPubMedPubMed Central Google Scholar
Frary, A. et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science289, 85– 88 (2000).A landmark publication reporting the isolation of a quantitative trait locus gene by positional cloning. ArticleCASPubMed Google Scholar
Varilo, T. et al. Linkage disequilibrium in isolated populations: Finland and a young subpopulation of Kuusamo. Eur. J. Hum. Genet. (in the press).
Helgason, A. et al. Estimating Scandinavian and Gaelic ancestry in the male settlers of Iceland. Am. J. Hum. Genet.67, 697– 717 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ginns, E. I. et al. A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nature Genet.12, 431–435 (1996). ArticleCASPubMed Google Scholar
Detera-Wadleigh, S. et al. A high-density genome scan detects evidence for a biopolar–disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2 . Proc. Natl Acad. Sci. USA96, 5604– 5609 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ober, C. et al. Collaborative study on the genetics of asthma. Genome-wide search for asthma susceptibility loci in a founder population. Hum. Mol. Genet.7, 1393–1398 ( 1998). ArticleCASPubMed Google Scholar
Ober, C., Tsalenko, A., Parry, R. & Cox, N. J. A second-generation genomewide screen for asthma-suspectibility alleles in a founder population Am. J. Hum. Genet.67, 1154– 1162 (2000). CASPubMedPubMed Central Google Scholar
Marsh, D. G. et al. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. Nature Genet.15, 389 –392 (1997). Article Google Scholar
Hanson, R. L. et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am. J. Hum. Genet.63, 1130–1138 ( 1998).Shows the power of the quantitative trait locus strategy and the quantitation of phenotypes for the identification of disease susceptibility loci. ArticleCASPubMedPubMed Central Google Scholar
Elbein, S., Hoffman, M., Teng, K., Leppert, M. & Hasstect, S. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes48, 1175 –1182 (1999). ArticleCASPubMed Google Scholar
Ghosh, S. et al. The Finland–United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to Type 2 diabetes. Am. J. Hum. Genet.67, 1174–1185 (2000). CASPubMedPubMed Central Google Scholar
Guilford, P. et al. A non–syndromic form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nature Genet.6, 24–28 (1994 ). ArticleCASPubMed Google Scholar
Scott, D. A. et al. Nonsyndromic autosomal recessive deafness is linked to the DFNBI locus in a large inbred Bedouin family from Israel. Am. J. Hum. Genet.57, 965–968 (1995). CASPubMedPubMed Central Google Scholar
Kelsell, D.P. et al. Connexin 26 mutations in hereditary nonsyndromic sensorineural deafness. Nature387, 80– 83 (1997). ArticleCASPubMed Google Scholar
Hovatta, I. et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation suggesting multiple susceptibility loci. Am. J. Hum. Genet.65, 1114–1124 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brzustowicz, L. M., Hodgkinson, K. A., Chow, E. W. C., Honer, W. G. & Bassett A. S. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22 . Science288, 678–682 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kuokkanen, S. et al. A putative vulnerability locus to multiple sclerosis maps to 5p14–p12 in a region syntenic to the murine locus Eae2. Nature Genet.13, 477–480 (1996). ArticleCASPubMed Google Scholar
Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet.13 , 444–468 (1996). Article Google Scholar
Castellani, L. W. et al. Mapping a gene for combined hyperlipidemia in a mutant mouse strain. Nature Genet.18, 374– 377 (1998). ArticleCASPubMed Google Scholar
Pei, W. et al. Support for linkage of familial combined hyperlipidemia to chromosome 1q21–q23 in Chinese and German families. Clin. Genet.57, 29–34 (2000). ArticleCASPubMed Google Scholar
Moises, H. W. et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nature Genet.11, 321–324 (1995). ArticleCASPubMed Google Scholar
Straub, R. E. et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nature Genet.11, 287–293 ( 1995). ArticleCASPubMed Google Scholar
Levinson, D. F. et al. Genome scan of schizophrenia. Am. J. Psychiatry155, 741–750 ( 1998). CASPubMed Google Scholar
Smith, J. R. et al. Major suscpetibility locus for prostate cancer on chromosome 1 suggested by a genome wide search. Science274, 1371–1374 (1996). ArticleCASPubMed Google Scholar
Berthon, P. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am. J. Hum. Genet.62, 1416–1424 (1998). ArticleCASPubMedPubMed Central Google Scholar
Xu, J. et al. Combined analysis of hereditary prostate cancer linkage to 1q24–25. Results from 772 hereditary prostate cancer families from the International Consortium for Prostate Cancer Genetics. Am. J. Hum. Genet.66, 945–957 (2000). ArticleCASPubMedPubMed Central Google Scholar