A role for Saccharomyces cerevisiae histone H2A in DNA repair (original) (raw)

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
    Article ADS CAS Google Scholar
  2. Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711– 720 (1999).
    Article CAS Google Scholar
  3. Kornberg, R. D. & Lorch, Y. Chromatin-modifying and -remodeling complexes. Curr. Opin. Genet. Dev. 9, 148–151 (1999).
    Article CAS Google Scholar
  4. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 ( 1997).
    Article ADS CAS Google Scholar
  5. Smith, G. C. M. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916– 934 (1999).
    Article CAS Google Scholar
  6. Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94, 555–558 (1998).
    Article CAS Google Scholar
  7. O'Neill, T. et al. Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J. Biol. Chem. 275, 22719–22727 (2000).
    Article CAS Google Scholar
  8. Kim, S.-T., Lim, D.-S., Canman, C. E. & Kastan, M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538 –37543 (1999).
    Article CAS Google Scholar
  9. Anderson, C. W. & Lees-Miller, S. P. The nuclear serine/threonine protein kinase DNA-PK. Crit. Rev. Eukaryotic Gene Exp. 2, 283–314 ( 1992).
    CAS Google Scholar
  10. Bannister, A. J., Gottleib, T. M., Kouzarides, T. & Jackson, S. P. c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro: definition of the minimal kinase recognition motif. Nucleic Acids Res. 21, 1289–1295 (1993).
    Article CAS Google Scholar
  11. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–915 (1999).
    Article CAS Google Scholar
  12. Hirschhorn, J. N., Bortvin, A. L., Ricupero-Hovasse, S. L. & Winston, F. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol. Cell. Biol. 15, 1999–2009 ( 1995).
    Article CAS Google Scholar
  13. Schwartz, J. L. Monofunctional alkylating agent-induced S-phase-dependent DNA damage. Mutat. Res. 216, 111–118 (1989).
    Article CAS Google Scholar
  14. Povirk, L. F. DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat. Res. 355 , 71–89 (1996).
    Article Google Scholar
  15. Sanchez, Y. et al. Regulation of RAD53 by the _ATM_-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357–360 ( 1996).
    Article ADS CAS Google Scholar
  16. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).
    Article CAS Google Scholar
  17. de la Torre-Ruiz, M. A., Green, C. M. & Lowndes, N. F. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J. 17, 2687–2698 (1998).
    Article CAS Google Scholar
  18. Elledge, S. J., Zhou, Z., Allen, J. B. & Navas, T. A. DNA damage and cell cycle regulation of ribonucleotide reductase. BioEssays 15, 333–339 (1993).
    Article CAS Google Scholar
  19. Longhese, M. P., Foiani, M., Muzi-Falconi, M., Lucchini, G. & Plevani, P. DNA damage checkpoint in budding yeast. EMBO J. 17, 5525– 5528 (1998).
    Article CAS Google Scholar
  20. Critchlow, S. E. & Jackson, S. P. DNA joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998).
    Article CAS Google Scholar
  21. Lewis, L. K., Westmoreland, J. W. & Resnick, M. A. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 152, 1513–1529 (1999).
    CAS PubMed PubMed Central Google Scholar
  22. Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 4639–4648 ( 1996).
    Article CAS Google Scholar
  23. Astrom, S. U., Okamura, S. M. & Rine, J. Yeast cell-type regulation of DNA repair. Nature 397, 310 (1999).
    Article ADS CAS Google Scholar
  24. Lee, S. E., Paques, F., Sylvan, J. & Haber, J. E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).
    Article CAS Google Scholar
  25. Worcel, A., Strogatz, S. & Riley, D. Structure of chromatin and the linking number of DNA. Proc. Natl Acad. Sci. USA 78, 1461– 1465 (1981).
    Article ADS CAS Google Scholar
  26. Wechser, M. A., Kladde, M. P., Alfieri, J. A. & Peterson, C. L. Effects of Sin—versions of histone H4 on yeast chromatin structure and function. EMBO J. 16, 2086– 2095 (1997).
    Article CAS Google Scholar
  27. Usachenko, S. I., Bavykin, S. G., Gavin, I. M. & Bradbury, E. M. Rearrangement of the histone H2A C-terminal domain in the nucleosome. Proc. Natl Acad. Sci. USA 91, 6845– 6849 (1994).
    Article ADS CAS Google Scholar

Download references