Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet.30, 405?439 (1996). ArticleCASPubMed Google Scholar
Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol.10, 335?342 (2000). ArticleCASPubMed Google Scholar
Hochstrasser, M. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biol.2, E153?E157 (2000). PubMed ArticleCASPubMed Google Scholar
Hanania, U., Furman-Matarasso, N., Ron, M. & Avni, A. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J.19, 533? 541 (1999). ArticleCASPubMed Google Scholar
Kamitani, T., Kito, K., Nguyen, H. P., Fukuda-Kamitani, T. & Yeh, E. T. Characterization of a second member of the sentrin family of ubiquitin-like proteins. J. Biol. Chem.273 , 11349?11353 (1998). ArticleCASPubMed Google Scholar
Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E. & Freemont, P. S. PIC1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene13, 971 ?982 (1996). CASPubMed Google Scholar
Okura, T. et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol.157, 4277?4281 (1996). CASPubMed Google Scholar
Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol.135, 1457? 1470 (1996).RanGAP1 is identified as the first substrate for SUMO and the role of sumoylation in regulating the localization of RanGAP1 is shown. ArticleCASPubMed Google Scholar
Bayer, P. et al. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol.280, 275? 286 (1998). ArticleCASPubMed Google Scholar
Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell88, 97?107 (1997). This important study identifies RanGAP1 as a SUMO substrate and shows that sumoylation of RanGAP1 determines its interaction with RanBP2. ArticleCASPubMed Google Scholar
Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell96, 635? 644 (1999). ArticleCASPubMed Google Scholar
Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J.16, 5509?5519 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gong, L., Li, B., Millas, S. & Yeh, E. T. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett.448, 185? 189 (1999). ArticleCASPubMed Google Scholar
Desterro, J. M., Rodriguez, M. S., Kemp, G. D. & Hay, R. T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem.274, 10618 ?10624 (1999). ArticleCASPubMed Google Scholar
Desterro, J. M., Thomson, J. & Hay, R. T. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett.417, 297?300 (1997). ArticleCASPubMed Google Scholar
Gong, L., Kamitani, T., Fujise, K., Caskey, L. S. & Yeh, E. T. Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J. Biol. Chem.272, 28198? 28201 (1997). ArticleCASPubMed Google Scholar
Johnson, E. S. & Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem.272, 26799?26802 (1997). ArticleCASPubMed Google Scholar
Schwarz, S. E., Matuschewski, K., Liakopoulos, D., Scheffner, M. & Jentsch, S. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc. Natl Acad. Sci. USA95, 560?564 ( 1998). ArticleCASPubMedPubMed Central Google Scholar
Liu, Q. et al. The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). J. Biol. Chem.274, 16979? 16987 (1999). ArticleCASPubMed Google Scholar
Giraud, M. F., Desterro, J. M. & Naismith, J. H. Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr. D. Biol. Crystallogr.54, 891?898 (1998). ArticleCASPubMed Google Scholar
Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature398, 246?251 (1999).This paper describes the identification of the yeast Ulp1 protease as the first SUMO de-conjugating enzyme and shows that de-sumoylation is essential for viability in yeast. ArticleCASPubMed Google Scholar
Li, S. J. & Hochstrasser, M. The yeast ULP2 ( SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol.20, 2367? 2377 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schwienhorst, I., Johnson, E. S. & Dohmen, R. J. SUMO conjugation and deconjugation. Mol. Gen. Genet.263, 771?786 (2000). ArticleCASPubMed Google Scholar
Mossessova, E. & Lima, C. D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell5, 865?876 (2000). This important study provides insight into the mechanism of substrate recognition and catalysis by Ulp1. ArticleCASPubMed Google Scholar
Yeh, E. T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene248, 1?14 ( 2000). ArticleCASPubMed Google Scholar
Nishida, T., Tanaka, H. & Yasuda, H. A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur. J. Biochem.267, 6423?6427 (2000). ArticleCASPubMed Google Scholar
Gong, L., Millas, S., Maul, G. G. & Yeh, E. T. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem.275, 3355?3359 (2000). ArticleCASPubMed Google Scholar
Kim, K. I. et al. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem.275, 14102?14106 (2000). ArticleCASPubMed Google Scholar
Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell. Dev. Biol.15, 607?660 ( 1999). ArticlePubMed Google Scholar
Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc. Natl Acad. Sci. USA94, 3736?3741 ( 1997). ArticleCASPubMedPubMed Central Google Scholar
Mahajan, R., Gerace, L. & Melchior, F. Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol.140, 259?270 ( 1998). ArticleCASPubMedPubMed Central Google Scholar
Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol.140, 499?509 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635?651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, Y., Mizoi, J., Toh, E. A. & Kikuchi, Y. Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J. Biochem.128, 723?725 ( 2000). ArticleCASPubMed Google Scholar
Epps, J. L. & Tanda, S. The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Curr. Biol.8, 1277?1280 ( 1998). ArticleCASPubMed Google Scholar
Kamitani, T., Nguyen, H. P. & Yeh, E. T. Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J. Biol. Chem.272 , 14001?14004 (1997). ArticleCASPubMed Google Scholar
Guo, A. et al. The function of PML in p53-dependent apoptosis. Nature Cell Biol.2, 730?736 ( 2000). ArticleCASPubMed Google Scholar
Muller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J.17, 61?70 (1998). This study identifies PML as a substrate for SUMO and implicates sumoylation of PML in the regulation of its compartmentalization in nuclear bodies. ArticleCASPubMedPubMed Central Google Scholar
Sternsdorf, T., Jensen, K. & Will, H. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J. Cell Biol.139, 1621?1634 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kamitani, T., Nguyen, H. P., Kito, K., Fukuda-Kamitani, T. & Yeh, E. T. Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J. Biol. Chem.273, 3117?3120 (1998). ArticleCASPubMed Google Scholar
Kamitani, T. et al. Identification of three major sentrinization sites in PML . J. Biol. Chem.273, 26675? 26682 (1998). ArticleCASPubMed Google Scholar
Duprez, E. et al. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localization. J. Cell Sci.112, 381?393 (1999). CASPubMed Google Scholar
Everett, R. D. et al. The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms . J. Virol.72, 6581?6591 (1998). CASPubMedPubMed Central Google Scholar
Muller, S. & Dejean, A. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J. Virol.73, 5137? 5143 (1999). CASPubMedPubMed Central Google Scholar
Everett, R. D., Lomonte, P., Sternsdorf, T., van Driel, R. & Orr, A. Cell cycle regulation of PML modification and ND10 composition. J. Cell Sci.112, 4581?4588 (1999). CASPubMed Google Scholar
Zhong, S. et al. Role of SUMO-1-modified PML in nuclear body formation. Blood95, 2748?2752 ( 2000). CASPubMed Google Scholar
Ishov, A. M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol.147, 221?234 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lehembre, F., Muller, S., Pandolfi, P. P. & Dejean, A. Regulation of Pax3 transcriptional activity by SUMO-1-modified PML. Oncogene20, 1?9 ( 2001). ArticleCASPubMed Google Scholar
Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature406, 207? 210 (2000). ArticleCASPubMed Google Scholar
Muller, S. et al. c-Jun and p53 activity is modulated by SUMO-1 modification . J. Biol. Chem.275, 13321? 13329 (2000). ArticleCASPubMed Google Scholar
Minty, A., Dumont, X., Kaghad, M. & Caput, D. Covalent modification of p73α by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J. Biol. Chem.275, 36316?36323 (2000). ArticleCASPubMed Google Scholar
Seeler, J. S., Marchio, A., Sitterlin, D., Transy, C. & Dejean, A. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc. Natl Acad. Sci. USA95 , 7316?7321 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lehming, N., Le Saux, A., Schuller, J. & Ptashne, M. Chromatin components as part of a putative transcriptional repressing complex . Proc. Natl Acad. Sci. USA95, 7322? 7326 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sternsdorf, T., Jensen, K., Reich, B. & Will, H. The nuclear dot protein SP100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J. Biol. Chem.274, 12555?12566 (1999). ArticleCASPubMed Google Scholar
Seeler, J. S. et al. Common properties of the nuclear body protein SP100 and the TIF1α chromatin factor: the role of SUMO modification. Mol. Cell. Biol. (in the press).
Kim, Y. H., Choi, C. Y. & Kim, Y. Covalent modification of the homeodomain-interacting protein kinase 2 (HIPK2) by the ubiquitin-like protein SUMO-1. Proc. Natl Acad. Sci. USA96, 12350?12355 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chakrabarti, S. R., Sood, R., Nandi, S. & Nucifora, G. Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Proc. Natl Acad. Sci. USA97, 13281?13285 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chakrabarti, S. R. et al. Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9. Proc. Natl Acad. Sci. USA96, 7467?7472 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Poukka, H., Karvonen, U., Janne, O. A. & Palvimo, J. J. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl Acad. Sci. USA97, 14145?14150 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lehembre, F. et al. Covalent modification of the transcriptional repressor tramtrack by the ubiquitin-related protein Smt3 in Drosophila flies. Mol. Cell. Biol.20, 1072?1082 (2000). ArticleCASPubMedPubMed Central Google Scholar
Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell2, 233 ?239 (1998).This report identifies IκBα as a target for SUMO and provides evidence for a role of sumoylation in counteracting the ubiquitylation of IκBα, thus leading to the model that SUMO acts as a protein stabilizer. ArticleCASPubMed Google Scholar
Buschmann, T., Fuchs, S. Y., Lee, C. G., Pan, Z. Q. & Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell101, 753?762 (2000). This study reports that SUMO and ubiquitin share an identical lysine residue within the RING finger of Mdm2 and suggest that sumoylation stabilizes Mdm2. ArticleCASPubMed Google Scholar
Israel, A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol.10, 129?133 (2000). ArticleCASPubMed Google Scholar
Bhaskar, V., Valentine, S. A. & Courey, A. J. A functional interaction between dorsal and components of the Smt3 conjugation machinery. J. Biol. Chem.275 , 4033?4040 (2000). ArticleCASPubMed Google Scholar
Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem.275, 8945?8951 (2000). ArticleCASPubMed Google Scholar
Honda, R. & Yasuda, H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase . Oncogene19, 1473?1476 (2000). ArticleCASPubMed Google Scholar
Melchior, F. & Hengst, L. Mdm2?SUMO1: is bigger better? Nature Cell Biol.2, E161? E163 (2000). ArticleCASPubMed Google Scholar
al-Khodairy, F., Enoch, T., Hagan, I. M. & Carr, A. M. The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J. Cell Sci.108, 475? 486 (1995). CASPubMed Google Scholar
Seufert, W., Futcher, B. & Jentsch, S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature373, 78 ?81 (1995). ArticleCASPubMed Google Scholar
Takahashi, Y. et al. Smt3, a SUMO-1 homolog, is conjugated to Cdc3, a component of septin rings at the mother-bud neck in budding yeast. Biochem. Biophys. Res. Commun.259, 582?587 (1999). ArticleCASPubMed Google Scholar
Johnson, E. S. & Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol.147, 981?994 (1999).This comprehensive study identifies septins as the major substrates for SUMO in yeast and suggests a role of septin sumoylation in cytokinesis. ArticleCASPubMedPubMed Central Google Scholar
Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell6, 793?807 (1995). This work initially identifies the yeastSMT3gene among other genes as a suppressor ofMIF2mutations, suggesting a role of SUMO for the maintenance of genomic integrity. ArticleCASPubMedPubMed Central Google Scholar
Brown, M. T., Goetsch, L. & Hartwell, L. H. MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in Saccharomyces cerevisiae. J. Cell Biol.123, 387?403 (1993). ArticleCASPubMed Google Scholar
Tanaka, K. et al. Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol. Cell. Biol.19, 8660?8672 (1999). ArticleCASPubMedPubMed Central Google Scholar
Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K. & Chen, D. J. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics36, 271?279 (1996). ArticleCASPubMed Google Scholar
Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K. & Chen, D. J. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics37, 183?186 ( 1996). ArticleCASPubMed Google Scholar
Kovalenko, O. V. et al. Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc. Natl Acad. Sci. USA93, 2598? 2563 (1996). Article Google Scholar
Li, W. et al. Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res.28, 1145?1153 ( 2000). ArticleCASPubMedPubMed Central Google Scholar
Mao, Y., Sun, M., Desai, S. D. & Liu, L. F. SUMO-1 conjugation to topoisomerase I: a possible repair response to topoisomerase-mediated DNA damage. Proc. Natl Acad. Sci. USA97, 4046 ?4051 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mao, Y., Desai, S. D. & Liu, L. F. SUMO-1 conjugation to human DNA topoisomerase II isozymes . J. Biol. Chem.275, 26066? 26073 (2000). ArticleCASPubMed Google Scholar
Kawabe, Y. et al. Covalent modification of the Werner's syndrome gene product with the ubiquitin-related protein, SUMO-1. J. Biol. Chem.275, 20963?20966 (2000). ArticleCASPubMed Google Scholar
Yeager, T. R. et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res.59, 4175?4179 (1999). CASPubMed Google Scholar
Zhong, S. et al. A role for PML and the nuclear body in genomic stability. Oncogene18, 7941?7947 ( 1999). ArticleCASPubMed Google Scholar
Johnson, F. B. et al. Association of the Bloom syndrome protein with topoisomerase IIIα in somatic and meiotic cells. Cancer Res.60, 1162?1167 (2000). CASPubMed Google Scholar
Everett, R. D. et al. A dynamic connection between centromeres and ND10 proteins . J. Cell Sci.112, 3443? 3454 (1999). CASPubMed Google Scholar
Zhong, S., Salomoni, P. & Pandolfi, P. P. The transcriptional role of PML and the nuclear body . Nature Cell Biol.2, E85? E90 (2000). ArticleCASPubMed Google Scholar
Seeler, J. S. & Dejean, A. The PML nuclear bodies: actors or extras? Curr. Opin. Genet. Dev.9, 362? 367 (1999). ArticleCASPubMed Google Scholar
Hofmann, H., Floss, S. & Stamminger, T. Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J. Virol.74, 2510?2524 (2000). ArticleCASPubMedPubMed Central Google Scholar
Adamson, A. L. & Kenney, S. The epstein-barr virus immediate-early protein BZLF1 is SUMO?1 modified and disrupts promyelocytic leukemia (PML) bodies. J. Virol.74, 1224?1233 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Q., Gutsch, D. & Kenney, S. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol. Cell. Biol.14, 1929?1938 ( 1994). ArticleCASPubMedPubMed Central Google Scholar
Andres, G., Alejo, A., Simon-Mateo, C. & Salas, M. L. African swine fever virus protease: A new viral member of the SUMO-1?specific protease family. J. Biol. Chem.276, 780 ?787 (2000). Article Google Scholar
Orth, K. et al. Disruption of signaling by yersinia effector YopJ, a ubiquitin-like protein protease. Science290, 1594? 1597 (2000). ArticleCASPubMed Google Scholar
Saitoh, H. et al. Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2 . Curr. Biol.8, 121?124 (1998). ArticleCASPubMed Google Scholar
Giorgino, F. et al. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc. Natl Acad. Sci. USA97, 1125?1130 (2000). ArticleCASPubMedPubMed Central Google Scholar
Long, X. & Griffith, L. C. Identification and characterization of a SUMO?1 conjugation system that modifies neuronal CaMKII in Drosophila melanogaster.J. Biol. Chem.275, 40765?40776 (2000). CAS Google Scholar
Rangasamy, D., Woytek, K., Khan, S. A. & Wilson, V. G. SUMO?1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. J. Biol. Chem.275, 37999? 38004(2000). ArticleCASPubMed Google Scholar